In [305]: train, validate, test =
np.split(df.sample(frac=1, random_state=42),
[int(.6*len(df)), int(.8*len(df))])
In [306]: train
Out[306]:
A B C D E
0 0.046919 0.792216 0.206294 0.440346 0.038960
2 0.301010 0.625697 0.604724 0.936968 0.870064
1 0.642237 0.690403 0.813658 0.525379 0.396053
9 0.488484 0.389640 0.599637 0.122919 0.106505
8 0.842717 0.793315 0.554084 0.100361 0.367465
7 0.185214 0.603661 0.217677 0.281780 0.938540
In [307]: validate
Out[307]:
A B C D E
5 0.806176 0.008896 0.362878 0.058903 0.026328
6 0.145777 0.485765 0.589272 0.806329 0.703479
In [308]: test
Out[308]:
A B C D E
4 0.521640 0.332210 0.370177 0.859169 0.401087
3 0.333348 0.964011 0.083498 0.670386 0.169619