Search
 
SCRIPT & CODE EXAMPLE
 
CODE EXAMPLE FOR PYTHON

feature engineering data preprocessing

from sklearn.preprocessing import StandardScaler

num_vars = ['pickup_lon', 'pickup_lat', 'dropoff_lon', 'dropoff_lat', 'distance']
cat_vars = ['hour', 'day', 'region']

scaler = StandardScaler()
scaler.fit(train[num_vars])

def design_matrix(t):
    """Create a design matrix from taxi ride dataframe t."""
    scaled = t[num_vars].copy()
    scaled.iloc[:,:] = scaler.transform(scaled) # Convert to standard units
    categoricals = [pd.get_dummies(t[s], prefix=s, drop_first=True) for s in cat_vars]
    return pd.concat([scaled] + categoricals, axis=1)

design_matrix(train).iloc[0,:]  
Source by data100.datahub.berkeley.edu #
 
PREVIOUS NEXT
Tagged: #feature #engineering #data #preprocessing
ADD COMMENT
Topic
Name
4+4 =