# for example I have 4 H2OModels
list(logit_fit,dt_fit,rf_fit,xgb_fit) %>%
# map a function to each element in the list
map(function(x) x %>% h2o.performance(valid=T) %>%
# from all these 'paths' in the object
.@metrics %>% .$thresholds_and_metric_scores %>%
# extracting true positive rate and false positive rate
.[c('tpr','fpr')] %>%
# add (0,0) and (1,1) for the start and end point of ROC curve
add_row(tpr=0,fpr=0,.before=T) %>%
add_row(tpr=0,fpr=0,.before=F)) %>%
# add a column of model name for future grouping in ggplot2
map2(c('Logistic Regression','Decision Tree','Random Forest','Gradient Boosting'),
function(x,y) x %>% add_column(model=y)) %>%
# reduce four data.frame to one
reduce(rbind) %>%
# plot fpr and tpr, map model to color as grouping
ggplot(aes(fpr,tpr,col=model))+
geom_line()+
geom_segment(aes(x=0,y=0,xend = 1, yend = 1),linetype = 2,col='grey')+
xlab('False Positive Rate')+
ylab('True Positive Rate')+
ggtitle('ROC Curve for Four Models')