Search
 
SCRIPT & CODE EXAMPLE
 
CODE EXAMPLE FOR CPP

c shortest path dijkstra

// A C++ program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph
 
#include <limits.h>
#include <stdio.h>
 
// Number of vertices in the graph
#define V 9
 
// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], bool sptSet[])
{
    // Initialize min value
    int min = INT_MAX, min_index;
 
    for (int v = 0; v < V; v++)
        if (sptSet[v] == false && dist[v] <= min)
            min = dist[v], min_index = v;
 
    return min_index;
}
 
// A utility function to print the constructed distance array
int printSolution(int dist[], int n)
{
    printf("Vertex   Distance from Source
");
    for (int i = 0; i < V; i++)
        printf("%d 		 %d
", i, dist[i]);
}
 
// Function that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{
    int dist[V]; // The output array.  dist[i] will hold the shortest
    // distance from src to i
 
    bool sptSet[V]; // sptSet[i] will be true if vertex i is included in shortest
    // path tree or shortest distance from src to i is finalized
 
    // Initialize all distances as INFINITE and stpSet[] as false
    for (int i = 0; i < V; i++)
        dist[i] = INT_MAX, sptSet[i] = false;
 
    // Distance of source vertex from itself is always 0
    dist[src] = 0;
 
    // Find shortest path for all vertices
    for (int count = 0; count < V - 1; count++) {
        // Pick the minimum distance vertex from the set of vertices not
        // yet processed. u is always equal to src in the first iteration.
        int u = minDistance(dist, sptSet);
 
        // Mark the picked vertex as processed
        sptSet[u] = true;
 
        // Update dist value of the adjacent vertices of the picked vertex.
        for (int v = 0; v < V; v++)
 
            // Update dist[v] only if is not in sptSet, there is an edge from
            // u to v, and total weight of path from src to  v through u is
            // smaller than current value of dist[v]
            if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX
                && dist[u] + graph[u][v] < dist[v])
                dist[v] = dist[u] + graph[u][v];
    }
 
    // print the constructed distance array
    printSolution(dist, V);
}
 
// driver program to test above function
int main()
{
    /* Let us create the example graph discussed above */
    int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },
                        { 4, 0, 8, 0, 0, 0, 0, 11, 0 },
                        { 0, 8, 0, 7, 0, 4, 0, 0, 2 },
                        { 0, 0, 7, 0, 9, 14, 0, 0, 0 },
                        { 0, 0, 0, 9, 0, 10, 0, 0, 0 },
                        { 0, 0, 4, 14, 10, 0, 2, 0, 0 },
                        { 0, 0, 0, 0, 0, 2, 0, 1, 6 },
                        { 8, 11, 0, 0, 0, 0, 1, 0, 7 },
                        { 0, 0, 2, 0, 0, 0, 6, 7, 0 } };
 
    dijkstra(graph, 0);
 
    return 0;
}
Source by www.geeksforgeeks.org #
 
PREVIOUS NEXT
Tagged: #shortest #path #dijkstra
ADD COMMENT
Topic
Name
2+9 =