// a dynamic programming approach for generating any number of fibonacci number
#include<bits/stdc++.h>
using namespace std;
long long int save[100]; // declare any sized array
long long int fibo(int n){
if(n==0) return 0;
if(n==1) return 1;
if(save[n]!=-1) return save[n]; //if save[n] holds any value that means we have already calculated it and can return it to recursion tree
save[n]=fibo(n-1)+fibo(n-2); // if it come tp this line that means I don't know what is the value of it
return save[n];
}
int main(){
ios_base::sync_with_stdio(0);
cin.tie(0);
memset(save,-1,sizeof save);
cout<<fibo(2)<<'
';
return 0;
}
def fib(n):
if(n<0):
print("Invalid input")
elif(n==0):
return 0
elif(n==1) or (n==2):
return 1
else:
return fib(n-1)+fib(n-2)
n=int(input())
print(fib(n))
// Find N-th fibonacci number using recursion
#include <bits/stdc++.h>
using namespace std;
int fibo(int n)
{
if (n == 1)
return 1;
if (n == 2)
return 1;
return fibo(n - 1) + fibo(n - 2);
}
int main()
{
int n, T;
cin >> T;
while (T--)
{
cin >> n;
cout << fibo(n) << endl;
}
return 0;
}
function nthFibonacci(n, cn = 0, val = 0, pval = 0) {
if (n == cn) return pval;
if (val == 0) val++;
return nthFibonacci(n, cn + 1, val + pval, val);
}