// C++ program to demonstrate insertion
// in a BST recursively.
#include <iostream>
using namespace std;
class BST {
int data;
BST *left, *right;
public:
// Default constructor.
BST();
// Parameterized constructor.
BST(int);
// Insert function.
BST* Insert(BST*, int);
// Inorder traversal.
void Inorder(BST*);
};
// Default Constructor definition.
BST ::BST()
: data(0)
, left(NULL)
, right(NULL)
{
}
// Parameterized Constructor definition.
BST ::BST(int value)
{
data = value;
left = right = NULL;
}
// Insert function definition.
BST* BST ::Insert(BST* root, int value)
{
if (!root) {
// Insert the first node, if root is NULL.
return new BST(value);
}
// Insert data.
if (value > root->data) {
// Insert right node data, if the 'value'
// to be inserted is greater than 'root' node data.
// Process right nodes.
root->right = Insert(root->right, value);
}
else if (value < root->data){
// Insert left node data, if the 'value'
// to be inserted is smaller than 'root' node data.
// Process left nodes.
root->left = Insert(root->left, value);
}
// Return 'root' node, after insertion.
return root;
}
// Inorder traversal function.
// This gives data in sorted order.
void BST ::Inorder(BST* root)
{
if (!root) {
return;
}
Inorder(root->left);
cout << root->data << endl;
Inorder(root->right);
}
# বাইনারি সার্চ ট্রি-এর ক্ষেত্রে ২ টি বিষয় মাথায় রাখতে হবে:
'''
১. যদি ট্রি-তে আগে থেকে কোনো নোড না থাকে (অর্থাৎ বর্তমান root নোড none থাকবে),
তাহলে নতুন যোগ করা নোডটিই হবে ট্রি- এর root নোড । আবার-
২. নতুন নোডটি যদি root নোডের সরাসরি চাইল্ড হয়, তাহলেও root নোডের পরিবর্তন ঘটবে।
এ কারণেই আমরা root নোডকে রিটার্ন করি।
'''
# There are two things to keep in mind when it comes to binary search trees:
'''
1. If the tree does not already have a node (ie the existing root node will have none),
then the newly added node will be the root node of the tree. Again
2. If the new node is a direct child of the root node, the root node will also change.
This is why we return to the root node.
'''
# 1st system:
class TreeNode:
def __init__(self,data):
self.data = data
self.parent = None
self.left = None
self.right = None
def __repr__(self):
return repr(self.data)
def add_left(self, node):
self.left = node
if node is not None:
node.parent = self
def add_right(self, node):
self.right = node
node.parent = self
# now bst_insert:
def bst_insert(root,node):
last_node = None
current_node = root
while current_node is not None:
last_node = current_node
if node.data < current_node.data:
current_node = current_node.left
else:
current_node = current_node.right
if last_node is None:
# tree was empty. node is the only node, hence root
root = node # new node add
elif node.data < last_node.data:
last_node.add_left(node)
else:
last_node.add_right(node)
return root
'''
_10_
/
5 17
/ /
3 12 19
/
1 4
'''
# now create_bst:
def create_bst():
li = list(map(int,input().split()))
root = TreeNode(li)
for item in root:
node = TreeNode(item)
root = bst_insert(root, node)
return root
# In_order tree traverse:
def in_order(node):
if node.left:
in_order(node.left)
print(node)
if node.right:
in_order(node.right)
# bst- tree minimum node:
def bst_minimum(root):
while root.left is not None:
root = root.left
print(root)
# bst_tree maximum node:
def bst_maximum(root):
while root.right is not None:
root = root.right
print(root)
# এখন আমরা BST-তে কোনো ডেটা খুঁজে বের করার ফাংশন টি লিখে ফেলি।
# Now we write the function to find any data in BST.
def best_search(node,key):
while node is not None:
if node.data == key:
return node
if key < node.data:
node = node.left
else:
node = node.right
return node
# Now check to your code:
if __name__ == "__main__":
root = create_bst()
print("Tree is root =",root)
print()
# In_order tree traverse:
print("In_order Tree:")
in_order(root)
print()
# bst- tree minimum node:
print("Minimum node:")
bst_minimum(root)
print()
# bst_tree maximum node:
print("Maximum node:")
bst_maximum(root)
print()
# input with searching:
print("bst_search:")
for key in [int(input("Please Enter the search key: ")),int(input("Please Enter the search key: "))]:
print("Searching =",key)
result = best_search(root, key)
print("Result =",result)
Binary Search Tree is a node-based binary tree data structure which has the following properties:
The left subtree of a node contains only nodes with keys lesser than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
The left and right subtree each must also be a binary search tree.
Binary Search Tree is a node-based binary tree data structure which has the following properties:
The left subtree of a node contains only nodes with keys lesser than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
The left and right subtree each must also be a binary search tree.
# Driver Code
arr = [ 2, 3, 4, 10, 40 ]
x = 10
# Function call
result = binarySearch(arr, 0, len(arr)-1, x)
if result != -1:
print ("Element is present at index % d" % result)
else:
print ("Element is not present in array")
A binary tree is said to be a binary search tree if for every node, the left is smaller than it and the right is bigger than it.
Example
10
9 20
6 11 13 26
For example, try looking for 13 and 26.
13 is larger than 10, so go to the right.
13 is smaller than 20, so go to the left.
26 is larger than 10, so go to the right.
26 is larger than 20, so go to the right.
// Java program to demonstrate
// insert operation in binary
// search tree
class BinarySearchTree {
/* Class containing left
and right child of current node
* and key value*/
class Node {
int key;
Node left, right;
public Node(int item)
{
key = item;
left = right = null;
}
}
// Root of BST
Node root;
// Constructor
BinarySearchTree() { root = null; }
BinarySearchTree(int value) { root = new Node(value); }
// This method mainly calls insertRec()
void insert(int key) { root = insertRec(root, key); }
/* A recursive function to
insert a new key in BST */
Node insertRec(Node root, int key)
{
/* If the tree is empty,
return a new node */
if (root == null) {
root = new Node(key);
return root;
}
/* Otherwise, recur down the tree */
else if (key < root.key)
root.left = insertRec(root.left, key);
else if (key > root.key)
root.right = insertRec(root.right, key);
/* return the (unchanged) node pointer */
return root;
}
// This method mainly calls InorderRec()
void inorder() { inorderRec(root); }
// A utility function to
// do inorder traversal of BST
void inorderRec(Node root)
{
if (root != null) {
inorderRec(root.left);
System.out.println(root.key);
inorderRec(root.right);
}
}
// Driver Code
public static void main(String[] args)
{
BinarySearchTree tree = new BinarySearchTree();
/* Let us create following BST
50
/
30 70
/ /
20 40 60 80 */
tree.insert(50);
tree.insert(30);
tree.insert(20);
tree.insert(40);
tree.insert(70);
tree.insert(60);
tree.insert(80);
// print inorder traversal of the BST
tree.inorder();
}
}
// This code is contributed by Ankur Narain Verma
# বাইনারি সার্চ ট্রি-এর ক্ষেত্রে ২ টি বিষয় মাথায় রাখতে হবে:
'''
১. যদি ট্রি-তে আগে থেকে কোনো নোড না থাকে (অর্থাৎ বর্তমান root নোড none থাকবে),
তাহলে নতুন যোগ করা নোডটিই হবে ট্রি- এর root নোড । আবার-
২. নতুন নোডটি যদি root নোডের সরাসরি চাইল্ড হয়, তাহলেও root নোডের পরিবর্তন ঘটবে।
এ কারণেই আমরা root নোডকে রিটার্ন করি।
'''
# There are two things to keep in mind when it comes to binary search trees:
'''
1. If the tree does not already have a node (ie the existing root node will have none),
then the newly added node will be the root node of the tree. Again
2. If the new node is a direct child of the root node, the root node will also change.
This is why we return to the root node.
'''
# second system:
class TreeNode:
def __init__(self,data):
self.data = data
self.parent = None
self.left = None
self.right = None
def __repr__(self):
return repr(self.data)
def add_left(self, node):
self.left = node
if node is not None:
node.parent = self
def add_right(self, node):
self.right = node
node.parent = self
# now bst_insert:
def bst_insert(root,node):
last_node = None
current_node = root
while current_node is not None:
last_node = current_node
if node.data < current_node.data:
current_node = current_node.left
else:
current_node = current_node.right
if last_node is None:
# tree was empty. node is the only node, hence root
root = node # new node add
elif node.data < last_node.data:
last_node.add_left(node)
else:
last_node.add_right(node)
return root
'''
_10_
/
5 17
/ /
3 12 19
/
1 4
'''
# now create_bst:
def create_bst():
root = TreeNode(10)
for item in [5,17,3,7,12,19,1,4]:
node = TreeNode(item)
root = bst_insert(root, node)
return root
# In_order tree traverse:
def in_order(node):
if node.left:
in_order(node.left)
print(node)
if node.right:
in_order(node.right)
# bst- tree minimum node:
def bst_minimum(root):
while root.left is not None:
root = root.left
print(root)
# Node transfer:
def bst_transfer(root, current_node, new_node):
if current_node.parent is None:
root = new_node
elif current_node == current_node.parent.left:
current_node.parent.add_left(new_node)
else:
current_node.parent.add_right(new_node)
return root
# Node delete:
def bst_delete(root,node):
if node.left is None:
root = bst_transfer(root,node,node.right)
elif node.right is None:
root = bst_transfer(root,node,node.left)
else:
min_node = bst_minimum(node.right)
if min_node.parent != node:
root = bst_transfer(root,min_node,min_node.right)
min_node.add_right(node.right)
root = bst_transfer(root,node,min_node)
min_node.add_left(node.left)
return root
# এখন আমরা BST-তে কোনো ডেটা খুঁজে বের করার ফাংশন টি লিখে ফেলি।
# Now we write the function to find any data in BST.
def best_search(node,key):
while node is not None:
if node.data == key:
return node
if key < node.data:
node = node.left
else:
node = node.right
return node
# Now check to your code:
if __name__ == "__main__":
root = create_bst()
print("Tree is root =",root)
print()
print("BST:")
in_order(root)
for key in [1,5,10]:
node = best_search(root,key)
print("will delete =", node)
root = bst_delete(root,node)
print("BST:")
in_order(root)