/*
Given an array of items. The array consists of
multiple sub-arrays holding two int values,
representing the value and the weight of an item,
respectively. We are also given the maximum
capacity of a knapsack.
In light of the above, this implementation demonstrates
how to solve the famous knapsack problem, where the aim
is to fit items in the knapsack with a view to
maximizing their combined value.
Let c be the capacity of the knapsack and
n be the number of items.
Time complexity: O(nc)
Space complexity: O(nc)
*/
import java.util.List;
import java.util.ArrayList;
import java.util.Arrays;
public class KnapsackProblem {
public static void main(String[] args) {
// An array of 4 items. Each subarray holds two
// ints representing value and weight of an item.
int[][] items = { { 1, 2 }, { 4, 3 }, { 5, 6 }, { 6, 7 } };
// Max capacity of knapsack
int capacity = 10;
List<List<Integer>> result = knapsackProblem(items, capacity);
// Selected items are: [4, 3] at idx 1 and [6, 7] at idx 3
System.out.println(result); // [[10], [3, 1]]
}
public static List<List<Integer>> knapsackProblem(int[][] items, int capacity) {
final int ITEMS = items.length;
// Rows represent the items
// Columns are the different capacity values.
int[][] values = new int[ITEMS + 1][capacity + 1];
int weight, value;
// Problem is solved through dynamic programming
for (int item = 1; item <= ITEMS; item++) {
value = items[item - 1][0];
weight = items[item - 1][1];
for (int c = 0; c <= capacity; c++) {
// If current item does not fit, then value is same
// as the one with the previous item in knapsack
if (weight > c) {
values[item][c] = values[item - 1][c];
} else {
// Either you add current item or you don't
values[item][c] = Math.max(values[item - 1][c], values[item - 1][c - weight] + value);
}
}
}
List<Integer> totalValue = Arrays.asList(values[ITEMS][capacity]);
int item = ITEMS, c = capacity;
List<Integer> finalItems = new ArrayList<>();
// Package items added to knapsack into
// final items list
while (item > 0 && c > 0) {
if (values[item][c] > values[item - 1][c]) {
c -= items[item - 1][1];
finalItems.add(item - 1);
}
item--;
}
List<List<Integer>> result = new ArrayList<List<Integer>>();
result.add(totalValue);
result.add(finalItems);
return result;
}
}
Input:
N = 3
W = 3
values[] = {1,2,3}
weight[] = {4,5,6}
Output: 0
Input:
N = 3
W = 4
values[] = {1,2,3}
weight[] = {4,5,1}
Output: 3