"""
17
/
/
/
4 20
/ /
/ /
/ /
1 9 18 23
34
"""
# Binary Search Tree implementation in Python
class BinaryTreeNode():
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def add_child(self, data):
if data == self.data: # check if the of new data exist already in the tree, if yes don't add
return
if data < self.data:
# Add to left subtree
if self.left:
self.left.add_child(data) # Recursively call the add_child method to add the data to an appropriate place
else:
self.left = BinaryTreeNode(data)
else:
# Add to right subtree
if self.right:
self.right.add_child(data) # Recursively call the add_child method to add the data to an appropriate place
else:
self.right = BinaryTreeNode(data)
# Visit Left subtree, then Root node and finaly Right subtree
def in_order_traversal(self): # Left - Root - Right
elements = []
# Getting all elements of the Left Subtree
if self.left:
elements += self.left.in_order_traversal() # Recursively get all the elements of the left subtree and add them into the list
elements.append(self.data) # Adding the root node to the list
# Getting all elements of the Right Subtree
if self.right:
elements += self.right.in_order_traversal() # Recursively get all the elements of the right subtree and add them into the list
return elements
# Get all elements from the Root node then the left subtree and finanally the Right subtree
def pre_order_traversal(self): # Root - Left - Right
elements = []
elements.append(self.data)
if self.left:
elements += self.left.pre_order_traversal() # Recursively get all the elements of the left subtree and add them into the list
if self.right:
elements += self.right.pre_order_traversal() # Recursively get all the elements of the right subtree and add them into the list
return elements # get the Root node element
# Get all elements from the Right subtree then the left subtree and finally the Root node
def post_order_traversal(self):
elements = []
if self.left:
elements += self.left.post_order_traversal() # Recursively get all the elements of the left subtree and add them into the list
if self.right:
elements += self.right.post_order_traversal() # Recursively get all the elements of the right subtree and add them into the list
elements.append(self.data) # Get the Root node element
return elements
def search_element(self, elem): # complexity of log n O(log n)
if self.data == elem:
return True
elif elem < self.data:
# This means if present, element would be on the left
if self.left:
return self.left.search_element(elem)
else:
return False
else:
# This means if present, element would be on the right
if self.right:
return self.right.search_element(elem)
else:
return False
def sum_of_all_elements_in_tree(self):
return sum(self.in_order_traversal())
def max_element_in_tree(self):
return max(self.in_order_traversal())
def min_element_in_tree(self):
return min(self.in_order_traversal())
# Tree Builder helper method
def build_binary_tree(lst_elem: list):
if len(lst_elem) >1:
root_node = BinaryTreeNode(lst_elem[0])
for i in lst_elem[1:]:
root_node.add_child(i)
#root_node.search_element(20)
#print(root_node.in_order_traversal())
return root_node
else:
return print("Insufficient number of elements")
if __name__ == '__main__':
mt = build_binary_tree([17, -5, 4, 1, 20, 9, -1, 23, 18, 0, 34])
print("In Order Traversal", mt.in_order_traversal())
print("Post Order Traversal", mt.post_order_traversal())
print("Pre Order Traversal", mt.pre_order_traversal())
print(mt.search_element(20))
print("Sum of all elemnts in tree", mt.sum_of_all_elements_in_tree())
print("Max element in tree is", mt.max_element_in_tree())
print("Min element in tree is", mt.min_element_in_tree())
# বাইনারি সার্চ ট্রি-এর ক্ষেত্রে ২ টি বিষয় মাথায় রাখতে হবে:
'''
১. যদি ট্রি-তে আগে থেকে কোনো নোড না থাকে (অর্থাৎ বর্তমান root নোড none থাকবে),
তাহলে নতুন যোগ করা নোডটিই হবে ট্রি- এর root নোড । আবার-
২. নতুন নোডটি যদি root নোডের সরাসরি চাইল্ড হয়, তাহলেও root নোডের পরিবর্তন ঘটবে।
এ কারণেই আমরা root নোডকে রিটার্ন করি।
'''
# There are two things to keep in mind when it comes to binary search trees:
'''
1. If the tree does not already have a node (ie the existing root node will have none),
then the newly added node will be the root node of the tree. Again
2. If the new node is a direct child of the root node, the root node will also change.
This is why we return to the root node.
'''
# 1st system:
class TreeNode:
def __init__(self,data):
self.data = data
self.parent = None
self.left = None
self.right = None
def __repr__(self):
return repr(self.data)
def add_left(self, node):
self.left = node
if node is not None:
node.parent = self
def add_right(self, node):
self.right = node
node.parent = self
# now bst_insert:
def bst_insert(root,node):
last_node = None
current_node = root
while current_node is not None:
last_node = current_node
if node.data < current_node.data:
current_node = current_node.left
else:
current_node = current_node.right
if last_node is None:
# tree was empty. node is the only node, hence root
root = node # new node add
elif node.data < last_node.data:
last_node.add_left(node)
else:
last_node.add_right(node)
return root
'''
_10_
/
5 17
/ /
3 12 19
/
1 4
'''
# now create_bst:
def create_bst():
li = list(map(int,input().split()))
root = TreeNode(li)
for item in root:
node = TreeNode(item)
root = bst_insert(root, node)
return root
# In_order tree traverse:
def in_order(node):
if node.left:
in_order(node.left)
print(node)
if node.right:
in_order(node.right)
# bst- tree minimum node:
def bst_minimum(root):
while root.left is not None:
root = root.left
print(root)
# bst_tree maximum node:
def bst_maximum(root):
while root.right is not None:
root = root.right
print(root)
# এখন আমরা BST-তে কোনো ডেটা খুঁজে বের করার ফাংশন টি লিখে ফেলি।
# Now we write the function to find any data in BST.
def best_search(node,key):
while node is not None:
if node.data == key:
return node
if key < node.data:
node = node.left
else:
node = node.right
return node
# Now check to your code:
if __name__ == "__main__":
root = create_bst()
print("Tree is root =",root)
print()
# In_order tree traverse:
print("In_order Tree:")
in_order(root)
print()
# bst- tree minimum node:
print("Minimum node:")
bst_minimum(root)
print()
# bst_tree maximum node:
print("Maximum node:")
bst_maximum(root)
print()
# input with searching:
print("bst_search:")
for key in [int(input("Please Enter the search key: ")),int(input("Please Enter the search key: "))]:
print("Searching =",key)
result = best_search(root, key)
print("Result =",result)
def search(node, search_item):
# Base case for recursion:
# The recursion will stop if the search item has been found
if search_item == node.data:
return True
# Check if the search item is greater than the node data
# and there is another node to the right to check
elif search_item > node.data and node.right is not None:
return search(node.right, search_item)
# Check if the search item is less than the node data
# and there is another node to the left to check
elif search_item < node.data and node.left is not None:
return search(node.left, search_item)
# Otherwise the search item does not exist
else:
return False
# Python program to demonstrate
# insert operation in binary search tree
# A utility class that represents
# an individual node in a BST
class Node:
def __init__(self, key):
self.left = None
self.right = None
self.val = key
# A utility function to insert
# a new node with the given key
def insert(root, key):
if root is None:
return Node(key)
else:
if root.val == key:
return root
elif root.val < key:
root.right = insert(root.right, key)
else:
root.left = insert(root.left, key)
return root
# A utility function to do inorder tree traversal
def inorder(root):
if root:
inorder(root.left)
print(root.val)
inorder(root.right)
# Driver program to test the above functions
# Let us create the following BST
# 50
# /
# 30 70
# / /
# 20 40 60 80
r = Node(50)
r = insert(r, 30)
r = insert(r, 20)
r = insert(r, 40)
r = insert(r, 70)
r = insert(r, 60)
r = insert(r, 80)
# Print inoder traversal of the BST
inorder(r)
# বাইনারি সার্চ ট্রি-এর ক্ষেত্রে ২ টি বিষয় মাথায় রাখতে হবে:
'''
১. যদি ট্রি-তে আগে থেকে কোনো নোড না থাকে (অর্থাৎ বর্তমান root নোড none থাকবে),
তাহলে নতুন যোগ করা নোডটিই হবে ট্রি- এর root নোড । আবার-
২. নতুন নোডটি যদি root নোডের সরাসরি চাইল্ড হয়, তাহলেও root নোডের পরিবর্তন ঘটবে।
এ কারণেই আমরা root নোডকে রিটার্ন করি।
'''
# There are two things to keep in mind when it comes to binary search trees:
'''
1. If the tree does not already have a node (ie the existing root node will have none),
then the newly added node will be the root node of the tree. Again
2. If the new node is a direct child of the root node, the root node will also change.
This is why we return to the root node.
'''
# second system:
class TreeNode:
def __init__(self,data):
self.data = data
self.parent = None
self.left = None
self.right = None
def __repr__(self):
return repr(self.data)
def add_left(self, node):
self.left = node
if node is not None:
node.parent = self
def add_right(self, node):
self.right = node
node.parent = self
# now bst_insert:
def bst_insert(root,node):
last_node = None
current_node = root
while current_node is not None:
last_node = current_node
if node.data < current_node.data:
current_node = current_node.left
else:
current_node = current_node.right
if last_node is None:
# tree was empty. node is the only node, hence root
root = node # new node add
elif node.data < last_node.data:
last_node.add_left(node)
else:
last_node.add_right(node)
return root
'''
_10_
/
5 17
/ /
3 12 19
/
1 4
'''
# now create_bst:
def create_bst():
root = TreeNode(10)
for item in [5,17,3,7,12,19,1,4]:
node = TreeNode(item)
root = bst_insert(root, node)
return root
# In_order tree traverse:
def in_order(node):
if node.left:
in_order(node.left)
print(node)
if node.right:
in_order(node.right)
# bst- tree minimum node:
def bst_minimum(root):
while root.left is not None:
root = root.left
print(root)
# Node transfer:
def bst_transfer(root, current_node, new_node):
if current_node.parent is None:
root = new_node
elif current_node == current_node.parent.left:
current_node.parent.add_left(new_node)
else:
current_node.parent.add_right(new_node)
return root
# Node delete:
def bst_delete(root,node):
if node.left is None:
root = bst_transfer(root,node,node.right)
elif node.right is None:
root = bst_transfer(root,node,node.left)
else:
min_node = bst_minimum(node.right)
if min_node.parent != node:
root = bst_transfer(root,min_node,min_node.right)
min_node.add_right(node.right)
root = bst_transfer(root,node,min_node)
min_node.add_left(node.left)
return root
# এখন আমরা BST-তে কোনো ডেটা খুঁজে বের করার ফাংশন টি লিখে ফেলি।
# Now we write the function to find any data in BST.
def best_search(node,key):
while node is not None:
if node.data == key:
return node
if key < node.data:
node = node.left
else:
node = node.right
return node
# Now check to your code:
if __name__ == "__main__":
root = create_bst()
print("Tree is root =",root)
print()
print("BST:")
in_order(root)
for key in [1,5,10]:
node = best_search(root,key)
print("will delete =", node)
root = bst_delete(root,node)
print("BST:")
in_order(root)