table = pd.pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
>>> table
C large small
A B
bar one 4.0 5.0
two 7.0 6.0
foo one 4.0 1.0
two NaN 6.0
>>> emp.pivot_table(index='dept', columns='gender', values='salary', aggfunc='mean').round(-3)
# Simplest pivot table must have a dataframe
# and an index/list of index.
table = pd.pivot_table(df, index =['A', 'B'])
table
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
... 'two'],
... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
... 'baz': [1, 2, 3, 4, 5, 6],
... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
>>> df
foo bar baz zoo
0 one A 1 x
1 one B 2 y
2 one C 3 z
3 two A 4 q
4 two B 5 w
5 two C 6 t
>>> df.pivot(index='foo', columns='bar', values='baz')
bar A B C
foo
one 1 2 3
two 4 5 6
df.pivot(index='foo', columns='bar', values=['baz', 'zoo'])
df.pivot_table(values, index, aggfunc={'value_1': np.mean,'value_2': [min, max, np.mean]})
table = pd.pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum, fill_value=0)
table = pd.pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
df.pivot_table(index = [df.iloc[:,meet_friends], df.iloc[:,friendsgiving]])
df.pivot_table(['int_age'],index = [df.iloc[:,meet_friends], df.iloc[:,friendsgiving]])
df.pivot(index="lev1", columns=["lev2", "lev3"],values="values")