#my_cython.pyx
import numpy as np
cimport numpy as np
import cython
cdef extern from "math.h":
double abs(double t)
@cython.wraparound(False)
@cython.boundscheck(False)
def pairwise_distance(np.ndarray[np.double_t, ndim=1] r):
cdef int i, j, c, size
cdef np.ndarray[np.double_t, ndim=1] ans
size = sum(range(1, r.shape[0]+1))
ans = np.empty(size, dtype=r.dtype)
c = -1
for i in range(r.shape[0]):
for j in range(i, r.shape[0]):
c += 1
ans[c] = abs(r[i] - r[j])
return ans
# main.py
import numpy as np
import random
import pyximport; pyximport.install()
from my_cython import pairwise_distance
r = np.array([random.randrange(1, 1000) for _ in range(0, 1000)], dtype=float)
pairwise_distance(r)
import numpy as np
import random
import sklearn.metrics.pairwise
import scipy.spatial.distance
r = np.array([random.randrange(1, 1000) for _ in range(0, 1000)])
c = r[:, None]
def option1(r):
dists = np.abs(r - r[:, None])
def option2(r):
dists = scipy.spatial.distance.pdist(r, 'cityblock')
def option3(r):
dists = sklearn.metrics.pairwise.manhattan_distances(r)
In [36]: timeit option1(r)
100 loops, best of 3: 5.31 ms per loop
In [37]: timeit option2(c)
1000 loops, best of 3: 1.84 ms per loop
In [38]: timeit option3(c)
100 loops, best of 3: 11.5 ms per loop