df.isna().sum()
In [5]: df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
In [6]: df.isna().sum()
Out[6]:
a 1
b 2
dtype: int64
null_cols = df.columns[df.isnull().all()]
df.drop(null_cols, axis = 1, inplace = True)
df = df[df.columns[~df.isnull().all()]]
dfObj.isnull().sum()
df.isna()
dataframe.isnull()
dataframe.any()
dfObj.isnull().sum().sum()
# Count the number of Missing Values in the DataFrame
df.isna().sum()
# Count the number of Non-Missing Values in the DataFrame
df.count()
cols_to_delete = df.columns[df.isnull().sum()/len(df) > .90]
df.drop(cols_to_delete, axis = 1, inplace = True)