values = set(map(lambda x:x[1], mylist))
newlist = [[y[0] for y in mylist if y[1]==x] for x in values]
In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
df
Out[1]:
a b
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
In [2]: df.groupby('a')['b'].apply(list)
Out[2]:
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
df1
Out[3]:
a new
0 A [1, 2]
1 B [5, 5, 4]
2 C [6]
# car_sales:> it is dataframe
# "Make" is column, or feature name
# operation is mean
car_sales.groupby(["Make"]).mean()
df.groupby('group').assign(mean_var1 = lambda x: np.mean(x.var1)