Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

knn compute_distances_one_loop

def compute_distances_one_loop(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a single loop over the test data.

    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in range(num_test):
      # Note axis=1 computes norm along rows
      dists[i] = np.linalg.norm(X[i]-self.X_train, axis=1)

    return dists

Difference was: 0.000000
Good! The distance matrices are the same
Comment

knn compute_distances_two_loop

def compute_distances_two_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a nested loop over both the training data and the
    test data.

    Inputs:
    - X: A numpy array of shape (num_test, D) containing test data.

    Returns:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      is the Euclidean distance between the ith test point and the jth training
      point.
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in range(num_test):
      for j in range(num_train):
        dists[i, j] = np.linalg.norm(X[i]-self.X_train[j])

    return dists

(500, 5000)
Comment

knn compute_distances_no_loop

def compute_distances_no_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using no explicit loops.

    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]

    # Expand ||x - y||**2 = ||x||**2 - 2 x.T ⋅y + ||y||**2,
    # where ||x||**2 = sum(x**2) (element-wise on matrix rows)
    # The final result is a (num_test, num_train) matrix
    # so the x**2 and y**2 intermediates must be reshaped appropriately
    x2 = np.sum(X**2, axis=1).reshape((num_test, 1))
    y2 = np.sum(self.X_train**2, axis=1).reshape((1, num_train))
    xy = -2*np.matmul(X, self.X_train.T)
    dists = np.sqrt(x2 + xy + y2)

    return dists

Difference was: 0.000000
Good! The distance matrices are the same
Comment

PREVIOUS NEXT
Code Example
Python :: QDateEdit.date().toString("MMMM dd, yyyy") does not display months in English 
Python :: ccacxc 
Python :: torch view vs unsqueeze 
Python :: Use one function for the "ComboboxSelected", to read multiple combobox 
Python :: pygame getting your charecter to jump 
Python :: python selectionsort 
Python :: if is 
Python :: how to create function python 
Python :: ternary operator in list comprehension python 
Python :: python program to remove duplicate images from folder 
Python :: how to end if else statement in python 
Python :: ignore exception decorator 
Python :: sklearn encoding pipelin 
Python :: python tuple index access 
Python :: edgar python documentation 
Python :: python static 
Python :: sns.kdeplot make line more detailed 
Python :: ring Using Self.Attribute and Self.Method 
Python :: how to deploy django app on heroku with mongodb 
Python :: how to get only the string of the input not the spaces arournd it in python 
Python :: logout from linux using python 
Python :: df.write using another delimiter 
Python :: re.split return none in the list 
Python :: dbscan multidimensional data 
Python :: legend outside subplot not displayed 
Python :: scrollable dataframe 
Python :: find max, min character 
Python :: python set prcess name 
Python :: sleep python 
Python :: insert string into middle of list python 
ADD CONTENT
Topic
Content
Source link
Name
6+3 =