Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

drop a column pandas

df.drop(['column_1', 'Column_2'], axis = 1, inplace = True) 
Comment

drop a column from dataframe

#To delete the column without having to reassign df
df.drop('column_name', axis=1, inplace=True) 
Comment

pandas remove column

df.drop(columns='column_name', inplace=True)
Comment

Drop a column pandas

df.drop('column_name', axis=1, inplace=True)
#no need to reasign df
#axis 1 is columns, 0 is rows
Comment

python code to drop columns from dataframe

# Let df be a dataframe
# Let new_df be a dataframe after dropping a column

new_df = df.drop(labels='column_name', axis=1)

# Or if you don't want to change the name of the dataframe
df = df.drop(labels='column_name', axis=1)

# Or to remove several columns
df = df.drop(['list_of_column_names'], axis=1)

# axis=0 for 'rows' and axis=1 for columns
Comment

drop columns pandas

df.drop(columns=['B', 'C'])
Comment

drop a column in pandas

note: df is your dataframe

df = df.drop('coloum_name',axis=1)
Comment

how to drop a column by name in pandas

>>> df.drop(columns=['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11
Comment

python - drop a column

# axis=1 tells Python that we want to apply function on columns instead of rows
# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['A', 'B', 'C'], axis=1, inplace=True)
Comment

drop a column from dataframe

df = df.drop('column_name', 1)
Comment

df drop column

df = df.drop(['B', 'C'], axis=1)
Comment

Dropping columns in Pandas

# Dropping a single column
df = pd.DataFrame({"A":[3,4], "B":[5,6], "C":[7,8]})
df_new = df.drop(columns="B")

# Dropping multiple columns
df_new = df.drop(columns=["A","B"])

# Dropping columns in-place
df.drop(columns="B", inplace=True)
Comment

drop column dataframe

df.drop(columns=['Unnamed: 0'])
Comment

pandas drop column by name

df.drop(columns=['Column_Name1','Column_Name2'], axis=1, inplace=True)
Comment

drop a column from dataframe

#working with "text" syntax for the columns:
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
Comment

delete columns pandas

df = df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index 
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
Comment

pandas remove column

del df['column_name']
Comment

drop a column in pandas

df = df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index 
Comment

pandas dataframe delete column

del df['column_name']
Comment

padnas drop column

df.drop(columns=['col1', 'col2'])
Comment

how to drop a column in python

# axis=1 tells Python that we want to apply function on columns instead of rows
# To delete the column permanently from original dataframe df, we can use the option inplace=True

df.drop(['column_1', 'Column_2'], axis = 1, inplace = True) 
Comment

delete pandas column

del df["column"]
Comment

pd df drop columns

df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
Comment

drop column pandas

df.drop(['column_1', 'Column_2'], axis = 1, inplace = True) 
# Remove all columns between column index 1 to 3
df.drop(df.iloc[:, 1:3], inplace = True, axis = 1)
Comment

delete columns pandas

df = df.drop(df.columns[[0, 1, 3]], axis=1)
Comment

pandas drop column in dataframe

>>> df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
Comment

drop column from dataframe

var = dataframe.drop(['col', 'col'], axis=1)
var.sum()
Comment

delete a column in pandas

# Remove the unwanted columns
data.drop(['Country code', 'Continental region'], axis=1, inplace=True)
data.head()
Comment

drop columns in python pandas

df
	A	B	C	D
0	0	1	2	3
1	4	5	6	7
2	8	9	10	11

df.drop(['B', 'C'], axis=1, inplace=True)
   A   D
0  0   3
1  4   7
2  8  11

df.drop(columns=['B', 'C'], inplace = True)
   A   D
0  0   3
1  4   7
2  8  11
Comment

remove columns from dataframe

df.drop('col_name',1) #1 drop column / 0 drop row
Comment

drop column pandas

df.drop(['Col_1', 'Col_2'], axis = 1) # to drop full colum more general way can visulize easily

df.drop(['Col_1', 'Col_2'], axis = 1, inplace = True) # advanced : to generate df without making copies inside memory
Comment

python how to drop columns from dataframe

# When you have many columns, and only want to keep a few:
# drop columns which are not needed.

# df = pandas.Dataframe()
columnsToKeep = ['column_1', 'column_13', 'column_99']
df_subset = df[columnsToKeep]

# Or:
df = df[columnsToKeep]
Comment

drop dataframe columns

# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis = 1, inplace = True)

dict_1 = {'workclass_stripped':'workclass', 'education_stripped':'education', 
         'marital-status_stripped':'marital_status', 'occupation_stripped':'occupation',
         'relationship_stripped':'relationship', 'race_stripped':'race',
         'sex_stripped':'sex', 'native-country_stripped':'native-country',
         'Income_stripped':'Income'}

df.rename(columns = dict_1, inplace = True)
df
Comment

How to drop columns from pandas dataframe

df.drop(cols_to_drop, axis=1)
Comment

pd df drop columns

df.drop([0, 1]) # drop cols by index
Comment

drop columns pandas dataframe

df.iloc[row_start:row_end , column_start:column_end]
#or
data.drop(index=0) 
Comment

pandas drop columns

In [212]:
df = pd.DataFrame(np.random.randint(0, 2, (10, 4)), columns=list('abcd'))
df.apply(pd.Series.value_counts)
Out[212]:
   a  b  c  d
0  4  6  4  3
1  6  4  6  7
Comment

drop columns

>>> df.drop(index='cow', columns='small')
                big
lama    speed   45.0
        weight  200.0
        length  1.5
falcon  speed   320.0
        weight  1.0
        length  0.3
Comment

how to drop a column by name in pandas

>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
...                              ['speed', 'weight', 'length']],
...                      codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
...                             [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
...                   data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
...                         [250, 150], [1.5, 0.8], [320, 250],
...                         [1, 0.8], [0.3, 0.2]])
>>> df
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
        length  1.5     1.0
cow     speed   30.0    20.0
        weight  250.0   150.0
        length  1.5     0.8
falcon  speed   320.0   250.0
        weight  1.0     0.8
        length  0.3     0.2
Comment

droping columns

ri.drop('county_name',
  axis='columns', inplace=True)
Comment

remove a columns in pandas

DataFrame.drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')[source]
Comment

PREVIOUS NEXT
Code Example
Python :: @ in python 
Python :: python copy list 
Python :: sparse matrix multiplication in python 
Python :: Python RegEx Subn – re.subn() 
Python :: python in intellij 
Python :: handling exceptions 
Python :: python file 
Python :: Code example of Python Modulo Operator 
Python :: drop columns 
Python :: how to return the sum of two numbers python 
Python :: python unicode point to utf8 string 
Python :: datetime day of month 
Python :: how to create list in python 
Python :: how to search for a specific character in a part of a python string 
Python :: matrix multiplication python without numpy 
Python :: dynamic array logic in python use 
Python :: self object 
Python :: json diff python 
Python :: discord.py get client avatar 
Python :: python syntaxerror: unexpected character after line continuation character 
Python :: python string equals 
Python :: Heroku gunicorn flask login is not working properly 
Python :: numpy.empty sorce code 
Python :: Python String index() 
Python :: python string: built-in function len() 
Python :: python get num chars 
Python :: ex:deleate account 
Python :: best api for python 
Python :: groupby sum and mean 2 columns 
Python :: full_pickle 
ADD CONTENT
Topic
Content
Source link
Name
6+6 =