for col in df:
print(df[col].unique())
# Keep first duplicate value
my_df = my_df.drop_duplicates(subset=['my_var'])
# Keep last duplicate value
my_df = my_df.drop_duplicates(subset=['my_var'], keep='last')
# Remove all duplicate values
my_df = my_df.drop_duplicates(subset=['my_var'], keep=False)
# get the unique values (rows)
df.drop_duplicates()
In [33]: df[df.columns[df.apply(lambda s: len(s.unique()) > 1)]]
Out[33]:
A B
0 0 a
1 1 b
2 2 c
3 3 d
4 4 e