columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)
import pandas as pd
data = pd.read_excel (r'C:UsersRonDesktopProduct List.xlsx')
df = pd.DataFrame(data, columns= ['Product'])
print (df)
import pandas as pd
data = pd.read_excel (r'C:UsersRonDesktopProduct List.xlsx')
df = pd.DataFrame(data, columns= ['Product'])
print (df)
import pandas as pd
data = pd.read_excel (r'C:UsersRonDesktopProduct List.xlsx')
df = pd.DataFrame(data, columns= ['Product'])
print (df)
import pandas as pd
data = pd.read_excel (r'C:UsersRonDesktopProduct List.xlsx')
df = pd.DataFrame(data, columns= ['Product'])
print (df)
In [25]: titanic.iloc[9:25, 2:5]
Out[25]:
Pclass Name Sex
9 2 Nasser, Mrs. Nicholas (Adele Achem) female
10 3 Sandstrom, Miss. Marguerite Rut female
11 1 Bonnell, Miss. Elizabeth female
12 3 Saundercock, Mr. William Henry male
13 3 Andersson, Mr. Anders Johan male
.. ... ... ...
20 2 Fynney, Mr. Joseph J male
21 2 Beesley, Mr. Lawrence male
22 3 McGowan, Miss. Anna "Annie" female
23 1 Sloper, Mr. William Thompson male
24 3 Palsson, Miss. Torborg Danira female
[16 rows x 3 columns]
age_sex = titanic[["Age", "Sex"]]
In [9]: age_sex.head()
Out[9]:
Age Sex
0 22.0 male
1 38.0 female
2 26.0 female
3 35.0 female
4 35.0 male