DekGenius.com
PYTHON
pandas split train test
from sklearn. model_selection import train_test_split
y = df. pop( 'output' )
X = df
X_train, X_test, y_train, y_test = train_test_split( X. index, y, test_size= 0.2 )
X. iloc[ X_train]
pandas split dataframe to train and test
train= df. sample( frac= 0.8 , random_state= 200 )
test= df. drop( train. index)
pandas split train test
from sklearn. model_selection import train_test_split
train, test = train_test_split( df, test_size= 0.2 )
train test split python
from sklearn. model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size= 0.25 , random_state= 42 )
train test split python
import numpy as np
from sklearn. model_selection import train_test_split
X, y = np. arange( 10 ) . reshape( ( 5 , 2 ) ) , range ( 5 )
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size= 0.33 , random_state= 42 )
split data train, test by id python
train_inds, test_inds = next ( GroupShuffleSplit( test_size= .20 , n_splits= 2 , random_state = 7 ) . split( df, groups= df[ 'Group_Id' ] ) )
train = df. iloc[ train_inds]
test = df. iloc[ test_inds]
train-test split code in pandas
df_permutated = df. sample( frac= 1 )
train_size = 0.8
train_end = int ( len ( df_permutated) * train_size)
df_train = df_permutated[ : train_end]
df_test = df_permutated[ train_end: ]
how to split a dataframe into train and test
def SplitDataframe ( df, y_column, test_size= 3 ) :
train_count = int ( round ( test_size* 10 / len ( df) * 100 ) )
train_ds = df[ train_count: ]
test_ds = df[ : train_count]
train_ds_X = train_ds. drop( [ y_column] , axis= 1 )
train_ds_y = train_ds[ y_column]
test_ds_X = test_ds. drop( [ y_column] , axis= 1 )
test_ds_y = test_ds[ y_column]
return ( train_ds_X, train_ds_y) , ( test_ds_X, test_ds_y)
© 2022 Copyright:
DekGenius.com