grouped_multiple = df.groupby(['Team', 'Pos']).agg({'Age': ['mean', 'min', 'max']})
grouped_multiple.columns = ['age_mean', 'age_min', 'age_max']
grouped_multiple = grouped_multiple.reset_index()
print(grouped_multiple)
In [11]: df.groupby(['col5', 'col2']).size()
Out[11]:
col5 col2
1 A 1
D 3
2 B 2
3 A 3
C 1
4 B 1
5 B 2
6 B 1
dtype: int64
In [8]: grouped = df.groupby('A')
In [9]: grouped = df.groupby(['A', 'B'])
df['COUNTER'] =1 #initially, set that counter to 1.
group_data = df.groupby(['Alphabet','Words'])['COUNTER'].sum() #sum function
print(group_data)
#formatting
candidates_salary_by_month = candidates_df.groupby('month').agg(num_cand_month =
('num_candidates', 'sum'),
avg_sal = ('salary', 'mean')).style.format('{:.0f}')
print(candidates_salary_by_month)