/*
This is an implementation that demonstrates
how to efficiently find the number of smaller
elements to the right of every individual array
element.
Example:
Input: nums = [5,2,6,1]
Output: [2,1,1,0]
Explanation:
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
Time complexity: O(nlog2(n))
Space complexity: O(n)
*/
import java.util.List;
import java.util.ArrayList;
public class SmallerNumbers {
class Item {
int val;
int index;
public Item(int v, int i) {
val = v;
index = i;
}
}
public static void main(String[] args) {
SmallerNumbers application = new SmallerNumbers();
int[] nums = { 5, 2, 6, 1 };
List<Integer> output = application.countSmaller(nums);
System.out.println(output); // [2, 1, 1, 0]
}
public List<Integer> countSmaller(int[] nums) {
int n = nums.length;
Item[] items = new Item[n];
for (int i = 0; i < n; i++) {
items[i] = new Item(nums[i], i);
}
int[] count = new int[n];
mergeSort(items, 0, n - 1, count);
List<Integer> result = new ArrayList<>();
for (int c : count) {
result.add(c);
}
return result;
}
private void mergeSort(Item[] items, int lo, int hi, int[] count) {
if (lo >= hi)
return;
int mid = lo + (hi - lo) / 2;
mergeSort(items, lo, mid, count);
mergeSort(items, mid + 1, hi, count);
merge(items, lo, mid, mid + 1, hi, count);
}
private void merge(Item[] items, int lo, int loEnd, int hi, int hiEnd, int[] count) {
int m = hiEnd - lo + 1;
Item[] sorted = new Item[m];
int index = 0;
int loPtr = lo, hiPtr = hi;
int rightCounter = 0;
while (loPtr <= loEnd && hiPtr <= hiEnd) {
if (items[hiPtr].val < items[loPtr].val) {
rightCounter++;
sorted[index++] = items[hiPtr++];
} else {
count[items[loPtr].index] += rightCounter;
sorted[index++] = items[loPtr++];
}
}
while (loPtr <= loEnd) {
count[items[loPtr].index] += rightCounter;
sorted[index++] = items[loPtr++];
}
while (hiPtr <= hiEnd) {
sorted[index++] = items[hiPtr++];
}
System.arraycopy(sorted, 0, items, lo, m);
}
}