[ Team LiB ] |
16.4 Reloading ModulesA module's code is run only once per process by default. To force a module's code to be reloaded and rerun, you need to ask Python explicitly to do so, by calling the reload built-in function. In this section, we'll explore how to use reloads to make your systems more dynamic. In a nutshell:
Why all the fuss about reloading modules? The reload function allows parts of programs to be changed without stopping the whole program. With reload, the effects of changes in components can be observed immediately. Reloading doesn't help in every situation, but where it does, it makes for a much shorter development cycle. For instance, imagine a database program that must connect to a server on startup; since program changes can be tested immediately after reloads, you need to connect only once while debugging. Because Python is interpreted (more or less), it already gets rid of the compile/link steps you need to go through to get a C program to run: modules are loaded dynamically, when imported by a running program. Reloading adds to this, by allowing you to also change parts of running programs without stopping. We should note that reload currently only works on modules written in Python; C extension modules can be dynamically loaded at runtime too, but they can't be reloaded. 16.4.1 Reload BasicsUnlike import and from:
Because reload expects an object, a module must have been previously imported successfully before you can reload it. In fact, if the import was unsuccessful due to a syntax or other error, you may need to repeat an import before you can reload. Furthermore, the syntax of import statements and reload calls differs: reloads require parenthesis, but imports do not. Reloading looks like this: import module # Initial import ...use module.attributes... ... # Now, go change the module file. ... reload(module) # Get updated exports. ...use module.attributes... You typically import a module, then change its source code in a text editor and reload. When you call reload, Python rereads the module file's source code and reruns its top-level statements. But perhaps the most important thing to know about reload is that it changes a module object in-place; it does not delete and recreate the module object. Because of that, every reference to a module object anywhere in your program is automatically affected by a reload. The details:
16.4.2 Reload ExampleHere's a more concrete example of reload in action. In the following example, we change and reload a module file without stopping the interactive Python session. Reloads are used in many other scenarios, too (see the sidebar Why You Will Care: Module Reloads), but we'll keep things simple for illustration here. First, let's write a module file named changer.py with the text editor of our choice: message = "First version" def printer( ): print message
This module creates and exports two names—one bound to a string, and another to a function. Now, start the Python interpreter, import the module, and call the function it exports; the function prints the value of the global variable message: % python >>> import changer >>> changer.printer( ) First version >>> Next, keep the interpreter active and edit the module file in another window: ...modify changer.py without stopping Python... % vi changer.py Here, change the global message variable, as well as the printer function body: message = "After editing" def printer( ): print 'reloaded:', message Finally, come back to the Python window and reload the module to fetch the new code we just changed. Notice that importing the module again has no effect; we get the original message even though the file's been changed. We have to call reload in order to get the new version: ...back to the Python interpreter/program... >>> import changer >>> changer.printer( ) # No effect: uses loaded module First version >>> reload(changer) # Forces new code to load/run <module 'changer'> >>> changer.printer( ) # Runs the new version now reloaded: After editing Notice that reload actually returns the module object for us; its result is usually ignored, but since expression results are printed at the interactive prompt, Python shows a default <module name> representation. |
[ Team LiB ] |