Search
 
SCRIPT & CODE EXAMPLE
 
CODE EXAMPLE FOR PYTHON

Python Relative Strength Indicator

import yfinance as yf
import matplotlib.pyplot as plt
import datetime as dt
import numpy as np
import pandas as pd


class MovingAverageRSIStrategy:

    def __init__(self, capital, stock, start, end, short_period, long_period):
        self.data = None
        self.is_long = False
        self.short_period = short_period
        self.long_period = long_period
        self.capital = capital
        self.equity = [capital]
        self.stock = stock
        self.start = start
        self.end = end

    def download_data(self):
        stock_data = {}
        ticker = yf.download(self.stock, self.start, self.end)
        stock_data['Price'] = ticker['Adj Close']
        self.data = pd.DataFrame(stock_data)

    def construct_signals(self):
        self.data['Short_MA'] = self.data['Price'].ewm(span=self.short_period).mean()
        self.data['Long_MA'] = self.data['Price'].ewm(span=self.long_period).mean()
        self.data['Move'] = self.data['Price'] - self.data['Price'].shift(1)
        self.data['Up'] = np.where(self.data['Move'] > 0, self.data['Move'], 0)
        self.data['Down'] = np.where(self.data['Move'] < 0, self.data['Move'], 0)
        self.data['Average_Gain'] = self.data['Up'].rolling(14).mean()
        self.data['Average_Loss'] = self.data['Down'].abs().rolling(14).mean()
        relative_strength = self.data['Average_Gain'] / self.data['Average_Loss']
        self.data['RSI'] = 100.0 - (100.0 / (1.0 + relative_strength))
        self.data = self.data.dropna()

    def plot_signals(self):
        plt.figure(figsize=(12, 6))
        plt.plot(self.data['Price'], label='Stock Price')
        plt.plot(self.data['Short_MA'], label='Short MA', color='blue')
        plt.plot(self.data['Long_MA'], label='Long MA', color='green')
        plt.title('Moving Average (MA) Crossover Trading Strategy With RSI')
        plt.xlabel('Date')
        plt.ylabel('Stock Price')
        plt.show()

    def simulate(self):
        price_when_buy = 0

        for index, row in self.data.iterrows():
            if row['Short_MA'] < row['Long_MA'] and self.is_long:
                self.equity.append(self.capital * row.Price / price_when_buy)
                self.is_long = False
            elif row['Short_MA'] > row['Long_MA'] and not self.is_long 
                    and row['RSI'] < 30:
                price_when_buy = row['Price']
                self.is_long = True

    def plot_equity(self):
        plt.figure(figsize=(12, 6))
        plt.title('Equity Curve')
        plt.plot(self.equity, label='Stock Price', color='green')
        plt.xlabel('Date')
        plt.ylabel('Capital ($)')
        plt.show()

    def show_stats(self):
        print("Profit Of The Trading Strategy: %.2f%%" % (
            (float(self.equity[-1]) - float(self.equity[0])) /
            float(self.equity[0]) * 100))
        print("Actual Capital: %0.2f" % self.equity[-1])
        returns = (self.data['Price'] - self.data['Price'].shift(1)) / self.data['Price'].shift(1)
        ratio = returns.mean() / returns.std() * np.sqrt(252)
        print('Sharpe Ratio: %.2f' % ratio)


if __name__ == '__main__':

    start_date = dt.datetime(2010, 1, 1)
    end_date = dt.datetime(2020, 1, 1)

    model = MovingAverageRSIStrategy(100, 'IBM', start_date, end_date, 40, 150)
    model.download_data()
    model.construct_signals()
    model.plot_signals()
    model.simulate()
    model.plot_equity()
    model.show_stats()
 
PREVIOUS NEXT
Tagged: #Python #Relative #Strength #Indicator
ADD COMMENT
Topic
Name
8+5 =