import torch
import numpy as np
from torchvision import datasets
from torchvision import transforms
from torch.utils.data.sampler import SubsetRandomSampler
class CustomDatasetFromCSV(Dataset):
def __init__(self, csv_path, transform=None):
....
dataset = CustomDatasetFromCSV(my_path)
batch_size = 16
validation_split = .2
shuffle_dataset = True
random_seed= 42
# Creating data indices for training and validation splits:
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(validation_split * dataset_size))
if shuffle_dataset :
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
# Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
sampler=train_sampler)
validation_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
sampler=valid_sampler)
# Usage Example:
num_epochs = 10
for epoch in range(num_epochs):
# Train:
for batch_index, (faces, labels) in enumerate(train_loader):
# ...