Search
 
SCRIPT & CODE EXAMPLE
 
CODE EXAMPLE FOR PYTHON

how to separate audio frequencies python

from scipy import fft, arange
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
import os


def frequency_spectrum(x, sf):
    """
    Derive frequency spectrum of a signal from time domain
    :param x: signal in the time domain
    :param sf: sampling frequency
    :returns frequencies and their content distribution
    """
    x = x - np.average(x)  # zero-centering

    n = len(x)
    k = arange(n)
    tarr = n / float(sf)
    frqarr = k / float(tarr)  # two sides frequency range

    frqarr = frqarr[range(n // 2)]  # one side frequency range

    x = fft(x) / n  # fft computing and normalization
    x = x[range(n // 2)]

    return frqarr, abs(x)


# Sine sample with a frequency of 1hz and add some noise
sr = 32  # sampling rate
y = np.linspace(0, 2*np.pi, sr)
y = np.tile(np.sin(y), 5)
y += np.random.normal(0, 1, y.shape)
t = np.arange(len(y)) / float(sr)

plt.subplot(2, 1, 1)
plt.plot(t, y)
plt.xlabel('t')
plt.ylabel('y')

frq, X = frequency_spectrum(y, sr)

plt.subplot(2, 1, 2)
plt.plot(frq, X, 'b')
plt.xlabel('Freq (Hz)')
plt.ylabel('|X(freq)|')
plt.tight_layout()


# wav sample from https://freewavesamples.com/files/Alesis-Sanctuary-QCard-Crickets.wav
here_path = os.path.dirname(os.path.realpath(__file__))
wav_file_name = 'Alesis-Sanctuary-QCard-Crickets.wav'
wave_file_path = os.path.join(here_path, wav_file_name)
sr, signal = wavfile.read(wave_file_path)

y = signal[:, 0]  # use the first channel (or take their average, alternatively)
t = np.arange(len(y)) / float(sr)

plt.figure()
plt.subplot(2, 1, 1)
plt.plot(t, y)
plt.xlabel('t')
plt.ylabel('y')

frq, X = frequency_spectrum(y, sr)

plt.subplot(2, 1, 2)
plt.plot(frq, X, 'b')
plt.xlabel('Freq (Hz)')
plt.ylabel('|X(freq)|')
plt.tight_layout()

plt.show()
Source by stackoverflow.com #
 
PREVIOUS NEXT
Tagged: #separate #audio #frequencies #python
ADD COMMENT
Topic
Name
8+4 =