// A C# Program to detect cycle in a graph
using System;
using System.Collections.Generic;
public class Graph {
private readonly int V;
private readonly List<List<int>> adj;
public Graph(int V)
{
this.V = V;
adj = new List<List<int>>(V);
for (int i = 0; i < V; i++)
adj.Add(new List<int>());
}
// This function is a variation of DFSUtil() in
// https://www.geeksforgeeks.org/archives/18212
private bool isCyclicUtil(int i, bool[] visited,
bool[] recStack)
{
// Mark the current node as visited and
// part of recursion stack
if (recStack[i])
return true;
if (visited[i])
return false;
visited[i] = true;
recStack[i] = true;
List<int> children = adj[i];
foreach (int c in children)
if (isCyclicUtil(c, visited, recStack))
return true;
recStack[i] = false;
return false;
}
private void addEdge(int sou, int dest) {
adj[sou].Add(dest);
}
// Returns true if the graph contains a
// cycle, else false.
// This function is a variation of DFS() in
// https://www.geeksforgeeks.org/archives/18212
private bool isCyclic()
{
// Mark all the vertices as not visited and
// not part of recursion stack
bool[] visited = new bool[V];
bool[] recStack = new bool[V];
// Call the recursive helper function to
// detect cycle in different DFS trees
for (int i = 0; i < V; i++)
if (isCyclicUtil(i, visited, recStack))
return true;
return false;
}
// Driver code
public static void Main(String[] args)
{
Graph graph = new Graph(4);
graph.addEdge(0, 1);
graph.addEdge(0, 2);
graph.addEdge(1, 2);
graph.addEdge(2, 0);
graph.addEdge(2, 3);
graph.addEdge(3, 3);
if(graph.isCyclic())
Console.WriteLine("Graph contains cycle");
else
Console.WriteLine("Graph doesn't "
+ "contain cycle");
}
}
// This code contributed by Rajput-Ji