Search
 
SCRIPT & CODE EXAMPLE
 
CODE EXAMPLE FOR CPP

priority queue using heap

// C++ code to implement priority-queue
// using array implementation of
// binary heap
 
#include <bits/stdc++.h>
using namespace std;
 
int H[50];
int size = -1;
 
// Function to return the index of the
// parent node of a given node
int parent(int i)
{
 
    return (i - 1) / 2;
}
 
// Function to return the index of the
// left child of the given node
int leftChild(int i)
{
 
    return ((2 * i) + 1);
}
 
// Function to return the index of the
// right child of the given node
int rightChild(int i)
{
 
    return ((2 * i) + 2);
}
 
// Function to shift up the node in order
// to maintain the heap property
void shiftUp(int i)
{
    while (i > 0 && H[parent(i)] < H[i]) {
 
        // Swap parent and current node
        swap(H[parent(i)], H[i]);
 
        // Update i to parent of i
        i = parent(i);
    }
}
 
// Function to shift down the node in
// order to maintain the heap property
void shiftDown(int i)
{
    int maxIndex = i;
 
    // Left Child
    int l = leftChild(i);
 
    if (l <= size && H[l] > H[maxIndex]) {
        maxIndex = l;
    }
 
    // Right Child
    int r = rightChild(i);
 
    if (r <= size && H[r] > H[maxIndex]) {
        maxIndex = r;
    }
 
    // If i not same as maxIndex
    if (i != maxIndex) {
        swap(H[i], H[maxIndex]);
        shiftDown(maxIndex);
    }
}
 
// Function to insert a new element
// in the Binary Heap
void insert(int p)
{
    size = size + 1;
    H[size] = p;
 
    // Shift Up to maintain heap property
    shiftUp(size);
}
 
// Function to extract the element with
// maximum priority
int extractMax()
{
    int result = H[0];
 
    // Replace the value at the root
    // with the last leaf
    H[0] = H[size];
    size = size - 1;
 
    // Shift down the replaced element
    // to maintain the heap property
    shiftDown(0);
    return result;
}
 
// Function to change the priority
// of an element
void changePriority(int i, int p)
{
    int oldp = H[i];
    H[i] = p;
 
    if (p > oldp) {
        shiftUp(i);
    }
    else {
        shiftDown(i);
    }
}
 
// Function to get value of the current
// maximum element
int getMax()
{
 
    return H[0];
}
 
// Function to remove the element
// located at given index
void remove(int i)
{
    H[i] = getMax() + 1;
 
    // Shift the node to the root
    // of the heap
    shiftUp(i);
 
    // Extract the node
    extractMax();
}
 
// Driver Code
int main()
{
 
    /*         45
            /      
           31      14
          /      /  
         13  20  7   11
        /  
       12   7
    Create a priority queue shown in
    example in a binary max heap form.
    Queue will be represented in the
    form of array as:
    45 31 14 13 20 7 11 12 7 */
 
    // Insert the element to the
    // priority queue
    insert(45);
    insert(20);
    insert(14);
    insert(12);
    insert(31);
    insert(7);
    insert(11);
    insert(13);
    insert(7);
 
    int i = 0;
 
    // Priority queue before extracting max
    cout << "Priority Queue : ";
    while (i <= size) {
        cout << H[i] << " ";
        i++;
    }
 
    cout << "
";
 
    // Node with maximum priority
    cout << "Node with maximum priority : "
         << extractMax() << "
";
 
    // Priority queue after extracting max
    cout << "Priority queue after "
         << "extracting maximum : ";
    int j = 0;
    while (j <= size) {
        cout << H[j] << " ";
        j++;
    }
 
    cout << "
";
 
    // Change the priority of element
    // present at index 2 to 49
    changePriority(2, 49);
    cout << "Priority queue after "
         << "priority change : ";
    int k = 0;
    while (k <= size) {
        cout << H[k] << " ";
        k++;
    }
 
    cout << "
";
 
    // Remove element at index 3
    remove(3);
    cout << "Priority queue after "
         << "removing the element : ";
    int l = 0;
    while (l <= size) {
        cout << H[l] << " ";
        l++;
    }
    return 0;
}
Source by www.geeksforgeeks.org #
 
PREVIOUS NEXT
Tagged: #priority #queue #heap
ADD COMMENT
Topic
Name
5+2 =