/*
This is an implementation that searches for
a target value within a binary search tree.
In a binary search tree, for ever node v:
- Elements in left subtree rooted at v
are less than element stored at v.
- Elements in right subtree rooted at v
are greater than or equal to one at v.
Let h be the height of the binary search
tree.
Time complexity: O(h)
Space complexity: O(1)
*/
public class BSTSearch {
private BTNode BTRoot;
public BSTSearch() {
/*
* Create tree below:
* * 4
* /
* 2 7
* * /
* * 6 8
*/
BTRoot = new BTNode(4, null, null);
BTNode rootLeft = new BTNode(2, null, null);
BTRoot.left = rootLeft;
BTNode rootRight = new BTNode(7, null, null);
BTRoot.right = rootRight;
BTNode rootRightLeft = new BTNode(6, null, null);
BTNode rootRightRight = new BTNode(8, null, null);
rootRight.left = rootRightLeft;
rootRight.right = rootRightRight;
}
public static void main(String[] args) {
BSTSearch application = new BSTSearch();
System.out.println(application.findTarget(8)); // true
System.out.println(application.findTarget(3)); // false
}
// Find target in binary search tree
public boolean findTarget(int target) {
return searchBST(BTRoot, target);
}
private boolean searchBST(BTNode root, int target) {
BTNode currentNode = root;
while (currentNode != null) {
if (currentNode.val == target) {
break;
} else if (currentNode.val > target) {
// Continue the search in left subtree
currentNode = currentNode.left;
} else {
// Continue the search in right subtree
currentNode = currentNode.right;
}
}
return (currentNode != null);
}
// Class representing a binary tree node
// with pointers to value, left, and right nodes
private class BTNode {
int val;
BTNode left;
BTNode right;
public BTNode(int val, BTNode left, BTNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
}