/*
This is an implementation that demonstrates
how to check whether a root-to-leaf sum
in a binary tree matches some target sum value.
Let n be the number of binary tree nodes
Time complexity: O(n)
Space complexity: O(n)
*/
public class RootToLeafSum {
private BTNode BTRoot;
public RootToLeafSum() {
/*
* Create tree below:
* * 1
* /
* 2 3
* * /
* * 4 5
*/
BTRoot = new BTNode(1, null, null);
BTNode rootLeft = new BTNode(2, null, null);
BTRoot.left = rootLeft;
BTNode rootRight = new BTNode(3, null, null);
BTRoot.right = rootRight;
BTNode rootRightLeft = new BTNode(4, null, null);
BTNode rootRightRight = new BTNode(5, null, null);
rootRight.left = rootRightLeft;
rootRight.right = rootRightRight;
}
public static void main(String[] args) {
RootToLeafSum application = new RootToLeafSum();
System.out.println(
application.hasRootToLeafSum(9)); // true
System.out.println(
application.hasRootToLeafSum(7)); // false
}
private boolean hasRootToLeafSum(int sum) {
return hasPathSum(BTRoot, sum);
}
private boolean hasPathSum(BTNode root, int sum) {
// Traverse the tree while constantly update sum
if (root == null) {
return false;
}
// Deduct current node's value from sum
sum -= root.val;
// Sum should only reach zero if a leaf node is reached
if (root.left == null && root.right == null) {
return sum == 0;
}
// Otherwise continue traversing the tree
return hasPathSum(root.left, sum) ||
hasPathSum(root.right, sum);
}
// Class representing a binary tree node
// with pointers to value, left, and right nodes
private class BTNode {
int val;
BTNode left;
BTNode right;
public BTNode(int val, BTNode left, BTNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
}