new_arr = np.insert(arr, index, arr_to_insert, axis=1)
x1= data[:,:-1]
x = np.insert(x1, index(0), values=1, axis=1)
#to add a column of 1's in the features matrix
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> z = np.zeros((2,1), dtype=int64)
>>> z
array([[0],
[0]])
>>> np.append(a, z, axis=1)
array([[1, 2, 3, 0],
[2, 3, 4, 0]])
: import numpy as np
: N = 3
: A = np.eye(N)
: np.c_[ A, np.ones(N) ] # add a column
array([[ 1., 0., 0., 1.],
[ 0., 1., 0., 1.],
[ 0., 0., 1., 1.]])
b = np.insert(a, insert_index, values=a[:,2], axis=1)
import numpy as np
N = 10
a = np.random.rand(N,N)
b = np.zeros((N,N+1))
b[:,:-1] = a
import numpy as np
N = 10
a = np.random.rand(N,N)
b = np.zeros((N,N+1))
b[:,:-1] = a
Returns
-------
append : ndarray
A copy of `arr` with `values` appended to `axis`. Note that `append`
does not occur in-place: a new array is allocated and filled. If
`axis` is None, `out` is a flattened array.