# If the row value in column 'is_blue' is 1
# Change the row value to 'Yes'
# otherwise change it to 'No'
df['is_blue'] = df['is_blue'].apply(lambda x: 'Yes' if (x == 1) else 'No')
# or you can use np.where
df['is_blue'] = np.where(df['is_blue'] == 1, 'Yes', 'No')
# You can also use mapping to accomplish the same result
# Warning: Mapping only works once on the same column creates NaN's otherwise
df['is_blue'] = df['is_blue'].map({0: 'No', 1: 'Yes'})
df['new_column'] = np.where(df['col2']<9, 'value1',
np.where(df['col2']<12, 'value2',
np.where(df['col2']<15, 'value3', 'value4')))
df['c'] = np.select(
[
(df['a'].isnull() & (df['b'] == 0))
],
[
1
],
default=0 )