df[df.isnull().any(axis=1)]
#Python, pandas
#Count missing values for each column of the dataframe df
df.isnull().sum()
df.isna().sum(axis=1)
df[df['Col2'].isnull()]
np.count_nonzero(df.isnull().values)
np.count_nonzero(df.isnull()) # also works
df.isna().sum().sum()
# will give count of nan values of every column.
df.isna().sum()
df['column_name'].value_counts(dropna=False)
import pandas as pd
## df1 as an example data frame
## col1 name of column for which you want to calculate the nan values
sum(pd.isnull(df1['col1']))
df.groupby(['No', 'Name'], dropna=False, as_index=False).size()
df.groupby(['No', 'Name'], dropna=False, as_index=False).size()
df.groupby(['No', 'Name'], dropna=False, as_index=False).size()
df.groupby(['No', 'Name'], dropna=False, as_index=False).size()