pd.value_counts(df.Account_Type)
Gold 3
Platinum 1
Name: Account_Type, dtype: int64
# Basic syntax:
len(set(my_list))
# By definition, sets only contain unique elements, so when the list
# is converted to a set all duplicates are removed.
# Example usage:
my_list = ['so', 'so', 'so', 'many', 'duplicated', 'words']
len(set(my_list))
--> 4
# Note, list(set(my_list)) is a useful way to return a list containing
# only the unique elements in my_list
df = df.groupby('domain')['ID'].nunique()
df['hID'].nunique()
5
from collections import Counter
words = ['a', 'b', 'c', 'a']
Counter(words).keys() # equals to list(set(words))
Counter(words).values() # counts the elements' frequency
words = ['a', 'b', 'c', 'a']
unique_words = set(words) # == set(['a', 'b', 'c'])
unique_word_count = len(unique_words) # == 3
df.loc[df['mID']=='A','hID'].agg(['nunique','count','size'])
len(set(["word1", "word1", "word2", "word3"]))
# set is like a list but it removes duplicates
# len counts the number of things inside the set