from sklearn.model_selection import cross_val_score
scores = cross_val_score(classifier_logreg, X_train, y_train, cv = 5, scoring='accuracy')
print('Cross-validation scores:{}'.format(scores))
print('Average cross-validation score: {}'.format(scores.mean()))
from sklearn.linear_model import RidgeClassifier
from sklearn.model_selection import cross_val_score
clf = RidgeClassifier() # estimator
score = cross_val_score(clf, X, y, cv=5)
# By default, the score computed at each CV iteration is the score
# method of the estimator. It is possible to change this by using
# the scoring parameter:
scores = cross_val_score(clf, X, y, cv=5, scoring='f1_macro')
>>> clf = svm.SVC(kernel='linear', C=1)
>>> scores = cross_validation.cross_val_score(
... clf, iris.data, iris.target, cv=5)
...
>>> scores
array([ 0.96..., 1. ..., 0.96..., 0.96..., 1. ])