class DBSCAN(object):
def __init__(self, eps=0, min_points=2):
self.eps = eps
self.min_points = min_points
self.visited = []
self.noise = []
self.clusters = []
self.dp = []
def cluster(self, data_points):
self.visited = []
self.dp = data_points
c = 0
for point in data_points:
if point not in self.visited:
self.visited.append(point)
neighbours = self.region_query(point)
if len(neighbours) < self.min_points:
self.noise.append(point)
else:
c += 1
self.expand_cluster(c, neighbours)
def expand_cluster(self, cluster_number, p_neighbours):
cluster = ("Cluster: %d" % cluster_number, [])
self.clusters.append(cluster)
new_points = p_neighbours
while new_points:
new_points = self.pool(cluster, new_points)
def region_query(self, p):
result = []
for d in self.dp:
distance = (((d[0] - p[0])**2 + (d[1] - p[1])**2 + (d[2] - p[2])**2)**0.5)
if distance <= self.eps:
result.append(d)
return result
def pool(self, cluster, p_neighbours):
new_neighbours = []
for n in p_neighbours:
if n not in self.visited:
self.visited.append(n)
n_neighbours = self.region_query(n)
if len(n_neighbours) >= self.min_points:
new_neighbours = self.unexplored(p_neighbours, n_neighbours)
for c in self.clusters:
if n not in c[1] and n not in cluster[1]:
cluster[1].append(n)
return new_neighbours
@staticmethod
def unexplored(x, y):
z = []
for p in y:
if p not in x:
z.append(p)
return z
class DBSCAN(object):
def __init__(self, eps=0, min_points=2):
self.eps = eps
self.min_points = min_points
self.visited = []
self.noise = []
self.clusters = []
self.dp = []
def cluster(self, data_points):
self.visited = []
self.dp = data_points
c = 0
for point in data_points:
if point not in self.visited:
self.visited.append(point)
neighbours = self.region_query(point)
if len(neighbours) < self.min_points:
self.noise.append(point)
else:
c += 1
self.expand_cluster(c, neighbours)
def expand_cluster(self, cluster_number, p_neighbours):
cluster = ("Cluster: %d" % cluster_number, [])
self.clusters.append(cluster)
new_points = p_neighbours
while new_points:
new_points = self.pool(cluster, new_points)
def region_query(self, p):
result = []
for d in self.dp:
distance = (((d[0] - p[0])**2 + (d[1] - p[1])**2 + (d[2] - p[2])**2)**0.5)
if distance <= self.eps:
result.append(d)
return result
def pool(self, cluster, p_neighbours):
new_neighbours = []
for n in p_neighbours:
if n not in self.visited:
self.visited.append(n)
n_neighbours = self.region_query(n)
if len(n_neighbours) >= self.min_points:
new_neighbours = self.unexplored(p_neighbours, n_neighbours)
for c in self.clusters:
if n not in c[1] and n not in cluster[1]:
cluster[1].append(n)
return new_neighbours
@staticmethod
def unexplored(x, y):
z = []
for p in y:
if p not in x:
z.append(p)
return z