Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

drop a column pandas

df.drop(['column_1', 'Column_2'], axis = 1, inplace = True) 
Comment

drop a column from dataframe

#To delete the column without having to reassign df
df.drop('column_name', axis=1, inplace=True) 
Comment

pandas remove column

df.drop(columns='column_name', inplace=True)
Comment

Drop a column pandas

df.drop('column_name', axis=1, inplace=True)
#no need to reasign df
#axis 1 is columns, 0 is rows
Comment

python code to drop columns from dataframe

# Let df be a dataframe
# Let new_df be a dataframe after dropping a column

new_df = df.drop(labels='column_name', axis=1)

# Or if you don't want to change the name of the dataframe
df = df.drop(labels='column_name', axis=1)

# Or to remove several columns
df = df.drop(['list_of_column_names'], axis=1)

# axis=0 for 'rows' and axis=1 for columns
Comment

drop columns pandas

df.drop(columns=['B', 'C'])
Comment

remove column from dataframe

df.drop('column_name', axis=1, inplace=True)
Comment

drop a column in pandas

note: df is your dataframe

df = df.drop('coloum_name',axis=1)
Comment

how to drop a column by name in pandas

>>> df.drop(columns=['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11
Comment

python - drop a column

# axis=1 tells Python that we want to apply function on columns instead of rows
# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['A', 'B', 'C'], axis=1, inplace=True)
Comment

drop a column from dataframe

df = df.drop('column_name', 1)
Comment

df drop column

df = df.drop(['B', 'C'], axis=1)
Comment

Dropping columns in Pandas

# Dropping a single column
df = pd.DataFrame({"A":[3,4], "B":[5,6], "C":[7,8]})
df_new = df.drop(columns="B")

# Dropping multiple columns
df_new = df.drop(columns=["A","B"])

# Dropping columns in-place
df.drop(columns="B", inplace=True)
Comment

drop column dataframe

df.drop(columns=['Unnamed: 0'])
Comment

pandas drop column by name

df.drop(columns=['Column_Name1','Column_Name2'], axis=1, inplace=True)
Comment

drop a column from dataframe

#working with "text" syntax for the columns:
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
Comment

delete columns pandas

df = df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index 
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
Comment

pandas remove column

del df['column_name']
Comment

remove columns from a dataframe python

df = df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index 
Comment

pandas dataframe delete column

del df['column_name']
Comment

padnas drop column

df.drop(columns=['col1', 'col2'])
Comment

how to drop a column in python

# axis=1 tells Python that we want to apply function on columns instead of rows
# To delete the column permanently from original dataframe df, we can use the option inplace=True

df.drop(['column_1', 'Column_2'], axis = 1, inplace = True) 
Comment

delete pandas column

del df["column"]
Comment

pd df drop columns

df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
Comment

how to delete a column from a dataframe in python

del df['column']
Comment

remove a column from dataframe

del df['column_name'] #to remove a column from dataframe
Comment

drop column pandas

df.drop(['column_1', 'Column_2'], axis = 1, inplace = True) 
# Remove all columns between column index 1 to 3
df.drop(df.iloc[:, 1:3], inplace = True, axis = 1)
Comment

delete columns pandas

df = df.drop(df.columns[[0, 1, 3]], axis=1)
Comment

pandas drop column in dataframe

>>> df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
Comment

drop column from dataframe

var = dataframe.drop(['col', 'col'], axis=1)
var.sum()
Comment

remove columns from a dataframe python

# Import pandas package
import pandas as pd

# create a dictionary with five fields each
data = {
'A':['A1', 'A2', 'A3', 'A4', 'A5'],
'B':['B1', 'B2', 'B3', 'B4', 'B5'],
'C':['C1', 'C2', 'C3', 'C4', 'C5'],
'D':['D1', 'D2', 'D3', 'D4', 'D5'],
'E':['E1', 'E2', 'E3', 'E4', 'E5'] }

# Convert the dictionary into DataFrame
df = pd.DataFrame(data)
#drop the 'A' column from your dataframe df 
df.drop(['A'],axis=1,inplace=True)
df

#-->df contains 'B','C','D' and 'E'
#in this example you will change your dataframe , if you don't want to ,
#just remove the in place parameter and assign your result to an other variable 

df1=df.drop(['B'],axis=1)
#-->df1 contains 'C','D','E'
df1
Comment

drop column

ALTER TABLE <TableName>
DROP COLUMN <ColumnName>;
Comment

delete a column in pandas

# Remove the unwanted columns
data.drop(['Country code', 'Continental region'], axis=1, inplace=True)
data.head()
Comment

drop columns in python pandas

df
	A	B	C	D
0	0	1	2	3
1	4	5	6	7
2	8	9	10	11

df.drop(['B', 'C'], axis=1, inplace=True)
   A   D
0  0   3
1  4   7
2  8  11

df.drop(columns=['B', 'C'], inplace = True)
   A   D
0  0   3
1  4   7
2  8  11
Comment

remove columns from dataframe

df.drop('col_name',1) #1 drop column / 0 drop row
Comment

drop column pandas

df.drop(['Col_1', 'Col_2'], axis = 1) # to drop full colum more general way can visulize easily

df.drop(['Col_1', 'Col_2'], axis = 1, inplace = True) # advanced : to generate df without making copies inside memory
Comment

delete column in dataframe pandas

df = df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index 
Comment

python how to drop columns from dataframe

# When you have many columns, and only want to keep a few:
# drop columns which are not needed.

# df = pandas.Dataframe()
columnsToKeep = ['column_1', 'column_13', 'column_99']
df_subset = df[columnsToKeep]

# Or:
df = df[columnsToKeep]
Comment

drop column

result.drop(['web-scraper-start-url', 'jfy', 'jfy-href'], axis=1, inplace=True)
Comment

drop dataframe columns

# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis = 1, inplace = True)

dict_1 = {'workclass_stripped':'workclass', 'education_stripped':'education', 
         'marital-status_stripped':'marital_status', 'occupation_stripped':'occupation',
         'relationship_stripped':'relationship', 'race_stripped':'race',
         'sex_stripped':'sex', 'native-country_stripped':'native-country',
         'Income_stripped':'Income'}

df.rename(columns = dict_1, inplace = True)
df
Comment

How to drop columns from pandas dataframe

df.drop(cols_to_drop, axis=1)
Comment

Python Delete column

import pandas as pd
EmployeeData=pd.DataFrame({'Name': ['ram','ravi','sham','sita','gita'],
                            'id': [101,102,103,104,105],
                        'Gender': ['M','M','M','F','F'],
                           'Age': [21,25,24,28,25]
                          })
# Priting data
print(EmployeeData)
 
# Deleting few columns
DeleteList=['Name','Gender']
EmployeeData=EmployeeData.drop(DeleteList, axis=1)
 
# Priting data
print(EmployeeData)
Comment

pd df drop columns

df.drop([0, 1]) # drop cols by index
Comment

how to delete a column in pandas dataframe

delete column from pandas data frame
Comment

drop columns pandas dataframe

df.iloc[row_start:row_end , column_start:column_end]
#or
data.drop(index=0) 
Comment

pandas drop columns

In [212]:
df = pd.DataFrame(np.random.randint(0, 2, (10, 4)), columns=list('abcd'))
df.apply(pd.Series.value_counts)
Out[212]:
   a  b  c  d
0  4  6  4  3
1  6  4  6  7
Comment

drop columns

>>> df.drop(index='cow', columns='small')
                big
lama    speed   45.0
        weight  200.0
        length  1.5
falcon  speed   320.0
        weight  1.0
        length  0.3
Comment

how to drop a column by name in pandas

>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
...                              ['speed', 'weight', 'length']],
...                      codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
...                             [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
...                   data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
...                         [250, 150], [1.5, 0.8], [320, 250],
...                         [1, 0.8], [0.3, 0.2]])
>>> df
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
        length  1.5     1.0
cow     speed   30.0    20.0
        weight  250.0   150.0
        length  1.5     0.8
falcon  speed   320.0   250.0
        weight  1.0     0.8
        length  0.3     0.2
Comment

droping columns

ri.drop('county_name',
  axis='columns', inplace=True)
Comment

drop columns by name

import pandas as pd

# create a sample dataframe
data = {
    'A': ['a1', 'a2', 'a3'],
    'B': ['b1', 'b2', 'b3'],
    'C': ['c1', 'c2', 'c3'],
    'D': ['d1', 'd2', 'd3']
}

df = pd.DataFrame(data)

# print the dataframe
print("Original Dataframe:
")
print(df)

# remove column C
df = df.drop('C', axis=1)

print("
After dropping C:
")
print(df)
Comment

remove a columns in pandas

DataFrame.drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')[source]
Comment

PREVIOUS NEXT
Code Example
Python :: python check variable is tuple 
Python :: read data from yaml file in python 
Python :: add static file in django 
Python :: get the system boot time in python 
Python :: import counter python 
Python :: how to get user ip in python 
Python :: supprimer ligne python dataframe 
Python :: join on column pandas 
Python :: two input number sum in python 
Python :: python get object attribute by string 
Python :: django print settings 
Python :: how to download file in python 
Python :: python read excel sheet name 
Python :: count unique values in pandas column 
Python :: sqlalchemy if a value in list of values 
Python :: get local python api image url 
Python :: how to make a complex calculator in python 
Python :: command prompt pause in python 
Python :: researchpy correlation 
Python :: scikit learn split data set 
Python :: web server python 
Python :: python datetime to utc 
Python :: django models distinct 
Python :: shift axis in python 
Python :: emoji in python 
Python :: pandas groupby histogram 
Python :: python datetime date only 
Python :: python numpy kurtosis 
Python :: python replace part in large file 
Python :: pandas conditional replace values in a series 
ADD CONTENT
Topic
Content
Source link
Name
7+4 =