DekGenius.com
PYTHON
drop a column pandas
df.drop(['column_1', 'Column_2'], axis = 1, inplace = True)
drop a column from dataframe
#To delete the column without having to reassign df
df.drop('column_name', axis=1, inplace=True)
Drop a column pandas
df.drop('column_name', axis=1, inplace=True)
#no need to reasign df
#axis 1 is columns, 0 is rows
drop columns pandas
df.drop(columns=['B', 'C'])
drop a column in pandas
note: df is your dataframe
df = df.drop('coloum_name',axis=1)
python - drop a column
# axis=1 tells Python that we want to apply function on columns instead of rows
# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['A', 'B', 'C'], axis=1, inplace=True)
drop a column from dataframe
df = df.drop('column_name', 1)
df drop column
df = df.drop(['B', 'C'], axis=1)
drop column dataframe
df.drop(columns=['Unnamed: 0'])
drop a column from dataframe
#working with "text" syntax for the columns:
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
drop a column in pandas
df = df.drop(df.columns[[0, 1, 3]], axis=1) # df.columns is zero-based pd.Index
padnas drop column
df.drop(columns=['col1', 'col2'])
how to drop a column in python
# axis=1 tells Python that we want to apply function on columns instead of rows
# To delete the column permanently from original dataframe df, we can use the option inplace=True
df.drop(['column_1', 'Column_2'], axis = 1, inplace = True)
pd df drop columns
df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
drop column pandas
df.drop(['column_1', 'Column_2'], axis = 1, inplace = True)
# Remove all columns between column index 1 to 3
df.drop(df.iloc[:, 1:3], inplace = True, axis = 1)
drop column from dataframe
var = dataframe.drop(['col', 'col'], axis=1)
var.sum()
drop column
ALTER TABLE <TableName>
DROP COLUMN <ColumnName>;
drop column pandas
df.drop(['Col_1', 'Col_2'], axis = 1) # to drop full colum more general way can visulize easily
df.drop(['Col_1', 'Col_2'], axis = 1, inplace = True) # advanced : to generate df without making copies inside memory
drop column
result.drop(['web-scraper-start-url', 'jfy', 'jfy-href'], axis=1, inplace=True)
drop dataframe columns
# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis = 1, inplace = True)
dict_1 = {'workclass_stripped':'workclass', 'education_stripped':'education',
'marital-status_stripped':'marital_status', 'occupation_stripped':'occupation',
'relationship_stripped':'relationship', 'race_stripped':'race',
'sex_stripped':'sex', 'native-country_stripped':'native-country',
'Income_stripped':'Income'}
df.rename(columns = dict_1, inplace = True)
df
pd df drop columns
df.drop([0, 1]) # drop cols by index
pandas drop columns
In [212]:
df = pd.DataFrame(np.random.randint(0, 2, (10, 4)), columns=list('abcd'))
df.apply(pd.Series.value_counts)
Out[212]:
a b c d
0 4 6 4 3
1 6 4 6 7
drop columns
>>> df.drop(index='cow', columns='small')
big
lama speed 45.0
weight 200.0
length 1.5
falcon speed 320.0
weight 1.0
length 0.3
droping columns
ri.drop('county_name',
axis='columns', inplace=True)
drop columns by name
import pandas as pd
# create a sample dataframe
data = {
'A': ['a1', 'a2', 'a3'],
'B': ['b1', 'b2', 'b3'],
'C': ['c1', 'c2', 'c3'],
'D': ['d1', 'd2', 'd3']
}
df = pd.DataFrame(data)
# print the dataframe
print("Original Dataframe:
")
print(df)
# remove column C
df = df.drop('C', axis=1)
print("
After dropping C:
")
print(df)
Dropping a column
# 27. Dropping a Column
df.drop(['CO_SFO'], axis = 1)
Dropping a Column
df.drop(['CO_SFO'], axis = 1)
© 2022 Copyright:
DekGenius.com