Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

éliminer le background image python

import cv2
import numpy as np

#== Parameters =======================================================================
BLUR = 21
CANNY_THRESH_1 = 10
CANNY_THRESH_2 = 200
MASK_DILATE_ITER = 10
MASK_ERODE_ITER = 10
MASK_COLOR = (0.0,0.0,1.0) # In BGR format


#== Processing =======================================================================

#-- Read image -----------------------------------------------------------------------
img = cv2.imread('C:/Temp/person.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#-- Edge detection -------------------------------------------------------------------
edges = cv2.Canny(gray, CANNY_THRESH_1, CANNY_THRESH_2)
edges = cv2.dilate(edges, None)
edges = cv2.erode(edges, None)

#-- Find contours in edges, sort by area ---------------------------------------------
contour_info = []
_, contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# Previously, for a previous version of cv2, this line was: 
#  contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# Thanks to notes from commenters, I've updated the code but left this note
for c in contours:
    contour_info.append((
        c,
        cv2.isContourConvex(c),
        cv2.contourArea(c),
    ))
contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True)
max_contour = contour_info[0]

#-- Create empty mask, draw filled polygon on it corresponding to largest contour ----
# Mask is black, polygon is white
mask = np.zeros(edges.shape)
cv2.fillConvexPoly(mask, max_contour[0], (255))

#-- Smooth mask, then blur it --------------------------------------------------------
mask = cv2.dilate(mask, None, iterations=MASK_DILATE_ITER)
mask = cv2.erode(mask, None, iterations=MASK_ERODE_ITER)
mask = cv2.GaussianBlur(mask, (BLUR, BLUR), 0)
mask_stack = np.dstack([mask]*3)    # Create 3-channel alpha mask

#-- Blend masked img into MASK_COLOR background --------------------------------------
mask_stack  = mask_stack.astype('float32') / 255.0          # Use float matrices, 
img         = img.astype('float32') / 255.0                 #  for easy blending

masked = (mask_stack * img) + ((1-mask_stack) * MASK_COLOR) # Blend
masked = (masked * 255).astype('uint8')                     # Convert back to 8-bit 

cv2.imshow('img', masked)                                   # Display
cv2.waitKey()

#cv2.imwrite('C:/Temp/person-masked.jpg', masked)           # Save
Comment

PREVIOUS NEXT
Code Example
Python :: how to join basename and directory in python os 
Python :: symmetrical sum python 
Python :: remove toggle/pandaslux 
Python :: df describe 
Python :: python datetime with day date suffix format 
Python :: clone dict python 
Python :: how to convert a string to a list python 
Python :: saving model 
Python :: python flask rest api 
Python :: gurobi get feasible solution when timelimit reached 
Python :: pygame pin to top 
Python :: python print exection type 
Python :: python basic programs kilometers to miles 
Python :: intersection of 3 array in O(n) python 
Python :: python convert xml to dictionary 
Python :: python ip address increment 
Python :: how to plot side by side bar horizontal bar graph in python 
Python :: django base path on level up 
Python :: how to slice a set in python 
Python :: trim all new rows string python 
Python :: gitlab-ci.yml for python project 
Python :: smote on dataframe of feature 
Python :: python manage.py collectstatic 
Python :: tar dataset 
Python :: python init dict by list 
Python :: dict to list python 
Python :: how to make a pattern in python in one line 
Python :: empty array numpy python 
Python :: read excel by row and output to txt 
Python :: fillna pandas inplace 
ADD CONTENT
Topic
Content
Source link
Name
3+5 =