def prime_number(n):
c = 0
for x in range(2, n):
if n % x == 0:
c = c + 1
return c
n = int(input("Enter a number = "))
if prime_number(n) == 0:
print("Prime number.")
else:
print("Not prime number.")
import math
prime = int(input("Enter your number: "))
count = 0
sqr = int(math.sqrt(prime))
for i in range(2, sqr+1):
if prime % i == 0:
print("your number is not prime")
count += 1
break
if count == 0:
print("your number is prime")
a=int(input('print number:'))
for i in range(2,a):
if a%i !=0:
continue
else:
print("Its not a prime number")
break # here break is exicuted then it means else would not be exicuted.
else:
print("Its a prime number")
#prime number gen
nums=[]
max=10000
class N:
def crazy():
for i in range(max):
nums.append(True)
nums[0]=False
nums[1]=False
for index in range(max):
if nums[index]:
current_multiple = 2
while index*current_multiple < max:
nums[index*current_multiple ]= False
current_multiple += 1
for index in range(max):
if nums[index]:
print(f"----> {index} is a prime #")
N.crazy()
def prime_checker(number):
is_prime = True #use a bool to flag prime number
for i in range(2, number):# starts at 2 and loops until the range of number
if number % i == 0:# if is divisible not a prime
is_prime = False
if is_prime == True:
print(f"{number} is a prime number")
else:
print(f"{number} is a not a prime number.")
n = int(input("Check this number: "))#check a number for prime
prime_checker(number=n)#call the function
def prime_checker(number):
is_prime = True
for i in range(2, number):
if number % i == 0:
is_prime = False
if is_prime:
print("It's a prime number.")
else:
print("It's not a prime number.")
n = int(input("Check this number: "))
prime_checker(number=n)
#prime number verification program
a=int(input('print number:'))
for i in range(2,a):
if a%i !=0:
continue
else:
print("Its not a prime number")
break # here break is exicuted then it means else would not be exicuted.
else:
print("Its a prime number")#this is out of the for loop suite.
# Prime number:
n = int(input("Please enter your input number: "))
if n>1:
for i in range(2,n):
if n%i == 0:
print("%d is a Not Prime."%n)
break
else:
print("%d is a Prime."%n)
else:
print("%d is a Not Prime."%n)
# Use to Definition Function:
'''
def Prime_number_chcek(n):
if n>1:
for i in range(2,n):
if n%i == 0:
return ("%d is a Not Prime."%n)
return ("%d is a Prime."%n)
return ("%d is a Not Prime."%n)
# Main Driver:
if __name__=="__main__":
n = int(input("Enter your input number: "))
print(Prime_number_chcek(n))
'''
# This shows how we can use for + else using a break in between
for x in range(1,101):
# if you want to find whether a user input is a prime number
# use the following insted of the first for loop
# x = int(input("Type a number: "))
for i in range(2, x):
if x % i == 0:
print(x, "is not a prime number.")
break
else:
print(x, "is a prime number.")
# This will print all the numbers from 1-100,
# in the same line will print whether it is a prime or not
# if you use the user input method
# when you type 9, the output will be:
# 9 is not a prime number.
# when you type 7, the output will be:
# 7 is a prime number.
def prime(n):
if n>1:
if n==2 or n==3:
print("it is a prime number")
for i in range(2,int(n/2)+1):
if n%i==0:
print("it is not a prime number")
break
else:
print("it's a prime number")
break
else:
print("it is not a prime number")
start_num , end_num = input("enter 2 number sepreted by ,:").split(",")
start_num , end_num = int(start_num) , int(end_num)
for number in range(start_num , end_num+1):
is_prime = True
for counter in range(2,number):
value = number % counter
if value == 0:
is_prime = False
break
if is_prime == True:
print(number)
'''Write a Python script that prints prime numbers less than 20'''
print("Prime numbers between 1 and 20 are:")
ulmt=20;
for num in range(ulmt):
# prime numbers are greater than 1
if num > 1:
for i in range(2,num):
if (num % i) == 0:
break
else:
print(num)
prime=int(input("Enter a number:"))
buffer=0
for i in range(2,prime):
if prime%i==0:
print(prime," is not a prime number")
buffer=1
break
if buffer==0:
print(prime," is a prime number")