PYTHON
pandas dataframe from dict
data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
pd.DataFrame.from_dict(data)
convert a dictionary into dataframe python
import pandas as pd
data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
pd.DataFrame.from_dict(data, orient='index').T
pandas dataframe from dict
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
pandas dataframe from dict
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
pandas dataframe from dict
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d
convert dict to dataframe
#Lazy way to convert json dict to df
pd.DataFrame.from_dict(data, orient='index').T
pandas read dictionary
data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
dataframe from dict
pd.DataFrame.from_dict(data)
dataframe to dictionary
>>> df.to_dict('records')
[{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
convert a dictionary to Pandas DataFrame
import pandas as pd
my_dict = {key:value,key:value,key:value,...}
df = pd.DataFrame(list(my_dict.items()),columns = ['column1','column2'])
pandas to dictionary
create pandas dataframe from dictionary
In [11]: pd.DataFrame(d.items()) # or list(d.items()) in python 3
Out[11]:
0 1
0 2012-07-02 392
1 2012-07-06 392
2 2012-06-29 391
3 2012-06-28 391
...
In [12]: pd.DataFrame(d.items(), columns=['Date', 'DateValue'])
Out[12]:
Date DateValue
0 2012-07-02 392
1 2012-07-06 392
2 2012-06-29 391
pandas dataframe.to_dict
#orientstr {‘dict’, ‘list’, ‘series’, ‘split’, ‘records’, ‘index’}
#Determines the type of the values of the dictionary.
#‘dict’ (default) : dict like {column -> {index -> value}}
#‘list’ : dict like {column -> [values]}
#‘series’ : dict like {column -> Series(values)}
#‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
#‘records’ : list like [{column -> value}, … , {column -> value}]
#‘index’ : dict like {index -> {column -> value}}
# Example:
data = pandas.read_csv("data/data_name.csv")
to_dict = data.to_dict(orient="records")
convert pandas dataframe to dict with a column as key
df.set_index('columnName').T.to_dict()
pandas df to dict
from pandas to dictionary
df = pd.DataFrame({'col1': [1, 2],
... 'col2': [0.5, 0.75]},
... index=['row1', 'row2'])
>>> df
col1 col2
row1 1 0.50
row2 2 0.75
>>> df.to_dict()
{'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
df to dict
>>> df.set_index('ID').T.to_dict('list')
{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}
pandas use dict to transform entries
>>> df = pd.DataFrame({'col2': {0: 'a', 1: 2, 2: np.nan}, 'col1': {0: 'w', 1: 1, 2: 2}})
>>> di = {1: "A", 2: "B"}
>>> df
col1 col2
0 w a
1 1 2
2 2 NaN
>>> df.replace({"col1": di})
col1 col2
0 w a
1 A 2
2 B NaN
pandas dataframe from dict
# import pandas library
import pandas as pd
# dictionary
details = {
'Ankit' : 22,
'Golu' : 21,
'hacker' : 23
}
# creating a Dataframe object from a list
# of tuples of key, value pair
df = pd.DataFrame(list(details.items()))
df