from bokeh.plotting import show, figure
from bokeh.models import ColumnDataSource, HoverTool
from bokeh.models.tools import CustomJSHover
df = {'X_value': [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]],
'model': ['m1', 'm1', 'm2', 'm2'],
'color': ['red', 'red', 'blue', 'blue'],
'Y_value': [[0.50, 0.66, 0.70, 0.67], [0.65, 0.68, 0.71, 0.66], [0.80, 0.79, 0.84, 0.80], [0.80, 0.83, 0.76, 0.64]]}
source = ColumnDataSource(df)
p = figure(plot_height=400)
p.multi_line(xs='X_value', ys='Y_value', legend="model", color='color',
line_width=5, line_alpha=0.6, hover_line_alpha=1.0,
source=source)
x_custom = CustomJSHover(code="""
return '' + special_vars.data_x
""")
y_custom = CustomJSHover(code="""
return '' + special_vars.data_y
""")
p.add_tools(
HoverTool(
show_arrow=False,
line_policy='next',
tooltips=[
('X_value', '@X_value{custom}'), # or just ('X_value', '$data_x')
('Y_value', '@Y_value{custom}')
],
formatters=dict(
X_value=x_custom,
Y_value=y_custom
)
)
)
show(p)