import matplotlib.pyplot as plt
fig = plt.figure(1) #identifies the figure
plt.title("Y vs X", fontsize='16') #title
plt.plot([1, 2, 3, 4], [6,2,8,4]) #plot the points
plt.xlabel("X",fontsize='13') #adds a label in the x axis
plt.ylabel("Y",fontsize='13') #adds a label in the y axis
plt.legend(('YvsX'),loc='best') #creates a legend to identify the plot
plt.savefig('Y_X.png') #saves the figure in the present directory
plt.grid() #shows a grid under the plot
plt.show()
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(data)
#this is not nessisary but makes your plot more readable
plt.ylabel('y axis means ...')
plt.xlabel('x axis means ...')
import matplotlib.pyplot as plt
import numpy as np
# Simple data to display in various forms
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)
fig, axarr = plt.subplots(2, 2)
fig.suptitle("This Main Title is Nicely Formatted", fontsize=16)
axarr[0, 0].plot(x, y)
axarr[0, 0].set_title('Axis [0,0] Subtitle')
axarr[0, 1].scatter(x, y)
axarr[0, 1].set_title('Axis [0,1] Subtitle')
axarr[1, 0].plot(x, y ** 2)
axarr[1, 0].set_title('Axis [1,0] Subtitle')
axarr[1, 1].scatter(x, y ** 2)
axarr[1, 1].set_title('Axis [1,1] Subtitle')
# Fine-tune figure;
# hide x ticks for top plots and y ticks for right plots
plt.setp([a.get_xticklabels() for a in axarr[0, :]], visible=False)
plt.setp([a.get_yticklabels() for a in axarr[:, 1]], visible=False)
# Tight layout often produces nice results
# but requires the title to be spaced accordingly
fig.tight_layout()
fig.subplots_adjust(top=0.88)
plt.show()