Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

k fold cross validation from scratch python

from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10)
print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
Comment

k fold cross validation python from scratch

#this function is used for KNN model. Where K represents the number of nearest neighbours.
def cross_validation(train_X, train_y, num_folds=4, k=1):
    dataset = list()
    dataset_split = list()
    val_acc = list()
    
    for i in range(len(train_X)):
        data = np.append(train_X[i],train_y[i])
        dataset.append(data)
    
    dataset_copy = list(dataset)
    fold_size = int(len(dataset) / num_folds)
    
    for i in range(num_folds):
        fold = list()
        while len(fold) < fold_size:
            index = randrange(len(dataset_copy))
            fold.append(dataset_copy.pop(index))
        dataset_split.append(fold)
        
    for folds in dataset_split:
        train_set= folds
        train_set = np.array(train_set)
        test_set = list()
        for row in folds:
            row_copy = list(row)
            test_set.append(row_copy)
            row_copy[-1] = None
        test_set = np.array(test_set)
        train_x = train_set[:, :-1]
        train_y = train_set[:,-1]
        test_x = test_set[:, :-1]
        predicted = predict(train_x,train_y, test_x, k)
        actual = [row[-1] for row in fold]
        accuracy = compute_accuracy(actual, predicted)
        val_acc.append(accuracy)
        
    val_acc_var = statistics.variance(val_acc)
    vall_acc = sum(val_acc)/len(val_acc)

    return vall_acc, val_acc_var
    
  #If this works, you can buy me a coffee.
# #https://www.buymeacoffee.com/eyolve 
Comment

K fold Cross Validation

# K-Fold Cross-Validation
from sklearn.model_selection import cross_validate
def cross_validation(model, _X, _y, _cv=5):
      '''Function to perform 5 Folds Cross-Validation
       Parameters
       ----------
      model: Python Class, default=None
              This is the machine learning algorithm to be used for training.
      _X: array
           This is the matrix of features.
      _y: array
           This is the target variable.
      _cv: int, default=5
          Determines the number of folds for cross-validation.
       Returns
       -------
       The function returns a dictionary containing the metrics 'accuracy', 'precision',
       'recall', 'f1' for both training set and validation set.
      '''
      _scoring = ['accuracy', 'precision', 'recall', 'f1']
      results = cross_validate(estimator=model,
                               X=_X,
                               y=_y,
                               cv=_cv,
                               scoring=_scoring,
                               return_train_score=True)
      
      return {"Training Accuracy scores": results['train_accuracy'],
              "Mean Training Accuracy": results['train_accuracy'].mean()*100,
              "Training Precision scores": results['train_precision'],
              "Mean Training Precision": results['train_precision'].mean(),
              "Training Recall scores": results['train_recall'],
              "Mean Training Recall": results['train_recall'].mean(),
              "Training F1 scores": results['train_f1'],
              "Mean Training F1 Score": results['train_f1'].mean(),
              "Validation Accuracy scores": results['test_accuracy'],
              "Mean Validation Accuracy": results['test_accuracy'].mean()*100,
              "Validation Precision scores": results['test_precision'],
              "Mean Validation Precision": results['test_precision'].mean(),
              "Validation Recall scores": results['test_recall'],
              "Mean Validation Recall": results['test_recall'].mean(),
              "Validation F1 scores": results['test_f1'],
              "Mean Validation F1 Score": results['test_f1'].mean()
              }
Comment

PREVIOUS NEXT
Code Example
Python :: python how to import a module given a stringg 
Python :: create python dataframe 
Python :: fill zeros left python 
Python :: how to change entry in a row based on another columns entry python 
Python :: how to delete record in django 
Python :: split string to list 
Python :: %d%m%Y python 
Python :: create Pandas Data Frame in Python 
Python :: how to take a list as input in python using sys.srgv 
Python :: how to run a command in command prompt using python 
Python :: python print variable 
Python :: merge two lists python 
Python :: np.vectorize 
Python :: plot multiplr linear regression model python 
Python :: how to make a grid in python 
Python :: python added dictionary together 
Python :: http python lib 
Python :: DIVAB 
Python :: how to create tkinter window 
Python :: flask delete from database 
Python :: for loop 
Python :: print on same line 
Python :: Python Tkinter TopLevel Widget 
Python :: tkinter add text to canvas 
Python :: firebase functions python 
Python :: python given upper triangle construct symmetric matrix 
Python :: custom pylatex command 
Python :: tkinter set text 
Python :: how to show rosbag file python 
Python :: how to append dict to dict in python 
ADD CONTENT
Topic
Content
Source link
Name
3+3 =