Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

maping value to data in pandas dataframe

note: u can assigne values in each of the common values in the dataframe 

df['new_coloum'] = df['coloum'].map({'value_1':1,'value_2':0})
Comment

pandas dataframe map

df.applymap(lambda x: x**2)
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

Syntax of pandas map()

# Syntax of Series.map()
Series.map(arg, na_action=None)
Comment

map dataframe

>>> s.map({'cat': 'kitten', 'dog': 'puppy'})
0   kitten
1    puppy
2      NaN
3      NaN
dtype: object
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

PREVIOUS NEXT
Code Example
Python :: can we use else without if in python 
Python :: plotly change legend name 
Python :: python test framework 
Python :: js choice function 
Python :: opencv resize image 
Python :: python json 
Python :: how to use the sleep function in python 
Python :: count pairs with given sum python 
Python :: sorted lambda 
Python :: run python on android 
Python :: function composition python 
Python :: argparse one argument or without argument 
Python :: run only few test cases in pytest 
Python :: python OSError: [Errno 22] Invalid argument: 
Python :: hash table data structure python 
Python :: python convert time 
Python :: add new column of dataframe 
Python :: python numpy delete column 
Python :: dot product of lists python 
Python :: python search list 
Python :: for loop in django template css 
Python :: python dict 
Python :: get column names and and index dataframe 
Python :: python program to find sum of array elements 
Python :: myshop flower notimplementederror 
Python :: how do you make plot show with matplotlib ion method 
Python :: imagefont cannot open resource 
Python :: analyser.polarity_scores get only positive 
Python :: dataset ( data.h5 ) containing cat or non-cat images download 
Python :: #Combine two sets on python with for loop 
ADD CONTENT
Topic
Content
Source link
Name
9+4 =