DekGenius.com
PYTHON
matplotlib histogram
import matplotlib.pyplot as plt
data = [1.7,1.8,2.0,2.2,2.2,2.3,2.4,2.5,2.5,2.5,2.6,2.6,2.8,
2.9,3.0,3.1,3.1,3.2,3.3,3.5,3.6,3.7,4.1,4.1,4.2,4.3]
#this histogram has a range from 1 to 4
#and 8 different bins
plt.hist(data, range=(1,4), bins=8)
plt.show()
plot histogram python
import matplotlib.pyplot as plt
data = [1.7,1.8,2.0,2.2,2.2,2.3,2.4,2.5,2.5,2.5,2.6,2.6,2.8,
2.9,3.0,3.1,3.1,3.2,3.3,3.5,3.6,3.7,4.1,4.1,4.2,4.3]
plt.hist(data)
plt.title('Histogram of Data')
plt.xlabel('data')
plt.ylabel('count')
matplotlib histogram python
import pyplot from matplotlib as plt
plt.hist(x_axis_list, y_axis_list)
matplotlib histogram
import pyplot from matplotlib as plt
plt.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, *, data=None, **kwargs)
how to use histogram in python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import colors
from matplotlib.ticker import PercentFormatter
# Creating dataset
np.random.seed(23685752)
N_points = 10000
n_bins = 20
# Creating distribution
x = np.random.randn(N_points)
y = .8 ** x + np.random.randn(10000) + 25
legend = ['distribution']
# Creating histogram
fig, axs = plt.subplots(1, 1,
figsize =(10, 7),
tight_layout = True)
# Remove axes splines
for s in ['top', 'bottom', 'left', 'right']:
axs.spines[s].set_visible(False)
# Remove x, y ticks
axs.xaxis.set_ticks_position('none')
axs.yaxis.set_ticks_position('none')
# Add padding between axes and labels
axs.xaxis.set_tick_params(pad = 5)
axs.yaxis.set_tick_params(pad = 10)
# Add x, y gridlines
axs.grid(b = True, color ='grey',
linestyle ='-.', linewidth = 0.5,
alpha = 0.6)
# Add Text watermark
fig.text(0.9, 0.15, 'Jeeteshgavande30',
fontsize = 12,
color ='red',
ha ='right',
va ='bottom',
alpha = 0.7)
# Creating histogram
N, bins, patches = axs.hist(x, bins = n_bins)
# Setting color
fracs = ((N**(1 / 5)) / N.max())
norm = colors.Normalize(fracs.min(), fracs.max())
for thisfrac, thispatch in zip(fracs, patches):
color = plt.cm.viridis(norm(thisfrac))
thispatch.set_facecolor(color)
# Adding extra features
plt.xlabel("X-axis")
plt.ylabel("y-axis")
plt.legend(legend)
plt.title('Customized histogram')
# Show plot
plt.show()
histogram python
>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
(array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))
matplolib histogramme
/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
import pandas.util.testing as tm
© 2022 Copyright:
DekGenius.com