Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

sum of a numpy array

>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])
>>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1)
array([1., 5.])
Comment

numpy get sum

>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])
>>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1)
array([1., 5.])
Comment

np sum

np.sum([12, 10], initial=0)
Comment

numpy sum

import numpy as np


speed = [10, 20, 30, 40]

# mean of an array - sum(speed) / len(speed)
x = np.mean(speed)
print(x)
# output 25.0

# return the median number - If there are two numbers in the middle, divide the sum of those numbers by two.
x = np.median(speed)
print(x)
# output 25.0

# return standard deviation - the lower the number return the closer the data is related
x = np.std(speed)
print(x)
# output 11.180339887498949

# return Variance of array - show how spread out the data is. The smaller the number the closer the data is related
x = np.var(speed)
print(x)
# output 125.0

# returns percentile of an array.
x = np.percentile(speed, 20)
print(f"20 percent of speed is {x} or lower")
# output 20 percent of speed is 16.0 or lower

x = np.percentile(speed, 90)
print(f"90 percent of speed is {x} or lower")
# output 90 percent of speed is 37.0 or lower

# We specify that the mean value is 5.0, and the standard deviation is .2.
# the lower the scale the closer the random numbers are to the loc number
# returns size of 100 floats in array
# normal distribution
x = np.random.normal(loc=5.0, scale=.2, size=100)
print(x)

# create array
arr = np.array([10, 20, 20, 30, 30, 20])
print("Original array:")
print(arr)

print("Mode: Most frequent value in the above array:")
print(np.bincount(arr).argmax())
# output
# Most frequent value in the above array:
# 20
# returns the least common multiple
x = np.lcm(3, 4)
print(x)
# output 12


# returns the lowest common multiple of items in array
arr = np.array([3, 6, 9])
x = np.lcm.reduce(arr)
print(x)
# 18

# returns the greatest common multiple of 2 numbers
x = np.gcd(3, 4)
print(x)
# output 1

# return the highest common multiple of items in array
arr = np.array([20, 8, 32, 36, 16])
x = np.gcd.reduce(arr)
print(x)
# output 4
Comment

python np.sum

npsum = np.sum(array)
Comment

PREVIOUS NEXT
Code Example
Python :: multithreaded programming in python 
Python :: count number of subdirectories 
Python :: python sort list by rule 
Python :: how to create a spark schema using a string 
Python :: pyplot aera 
Python :: class variable in python 
Python :: python integers 
Python :: gui def python 
Python :: separate each characters by commas into a single characters separated by commas 
Python :: merge two dict python 
Python :: change edit last line python 
Python :: django models filter 
Python :: unpacking tuples in python 
Python :: how to extract keys from dictreader python 
Python :: Roberta Inference TensorFlow 
Python :: python sound 
Python :: tensorflow euclidean distance 
Python :: pandas read csv encoding thai 
Python :: how to swirtch the placement of the levels in pandas 
Python :: The MEDIA_URL setting must end with a slash. 
Python :: pyhton comment 
Python :: read csv pandas nrow 
Python :: making your own range function with step in python 
Python :: python combine nested for loops 
Python :: hh:mm to mins in python 
Python :: .defaultdict 
Python :: columnspan tkinter 
Python :: pandas include nan in value_counts 
Python :: try except to specific line 
Python :: Fastest way to Convert Integers to Strings in Pandas DataFrame 
ADD CONTENT
Topic
Content
Source link
Name
3+5 =