Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

maping value to data in pandas dataframe

note: u can assigne values in each of the common values in the dataframe 

df['new_coloum'] = df['coloum'].map({'value_1':1,'value_2':0})
Comment

pandas dataframe map

df.applymap(lambda x: x**2)
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

Syntax of pandas map()

# Syntax of Series.map()
Series.map(arg, na_action=None)
Comment

map dataframe

>>> s.map({'cat': 'kitten', 'dog': 'puppy'})
0   kitten
1    puppy
2      NaN
3      NaN
dtype: object
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

map column dataframe python

df = pd.DataFrame({'col1':pd.date_range('2015-01-02 15:00:07', periods=3),
                   'col2':pd.date_range('2015-05-02 15:00:07', periods=3),
                   'col3':pd.date_range('2015-04-02 15:00:07', periods=3),
                   'col4':pd.date_range('2015-09-02 15:00:07', periods=3),
                   'col5':[5,3,6],
                   'col6':[7,4,3]})

print (df)
                 col1                col2                col3  
0 2015-01-02 15:00:07 2015-05-02 15:00:07 2015-04-02 15:00:07   
1 2015-01-03 15:00:07 2015-05-03 15:00:07 2015-04-03 15:00:07   
2 2015-01-04 15:00:07 2015-05-04 15:00:07 2015-04-04 15:00:07   

                 col4  col5  col6  
0 2015-09-02 15:00:07     5     7  
1 2015-09-03 15:00:07     3     4  
2 2015-09-04 15:00:07     6     3  

list_of_cols_to_change = ['col1','col2','col3','col4']
df[list_of_cols_to_change] = df[list_of_cols_to_change].apply(lambda x: x.dt.date)
print (df)
         col1        col2        col3        col4  col5  col6
0  2015-01-02  2015-05-02  2015-04-02  2015-09-02     5     7
1  2015-01-03  2015-05-03  2015-04-03  2015-09-03     3     4
2  2015-01-04  2015-05-04  2015-04-04  2015-09-04     6     3
Comment

PREVIOUS NEXT
Code Example
Python :: check if variable is empty python 
Python :: selenium python has no attrirute getText 
Python :: tkinter maximise window 
Python :: django filter by category 
Python :: print example 
Python :: .replit file python 
Python :: install pocketsphinx error 
Python :: How to Get the Union of Sets in Python 
Python :: how to specify variable type in python 
Python :: Modify a Python interpreter 
Python :: module in python 
Python :: django dumpdata specific app 
Python :: device gpu pytorch 
Python :: matlab filter in python 
Python :: Converting Dataframe from list Using a list in the dictionary 
Python :: create nested dictionary with user input in python 
Python :: character in string python 
Python :: Reason: Worker failed to boot 
Python :: how to remove element from nested list in python 
Python :: python plus 
Python :: slicing tuples 
Python :: chrome webdrivermanager 
Python :: upload file to s3 python 
Python :: ValueError: Shapes (None, 1) and (None, 3) are incompatible 
Python :: python linear regression 
Python :: python typecast 
Python :: python region 
Python :: how to take input of something in python 
Python :: python print same line 
Python :: f readlines python not working 
ADD CONTENT
Topic
Content
Source link
Name
8+4 =