df.dropna(inplace=True)
# to drop any rows that contain any null values
df.dropna(how='all', inplace=True)
# to drop the rows wich all of it's values is any
# if you want to drop the columns not the rows you just set the axis to 1 like this:
df.dropna(axis=1, inplace=True)
df.dropna(subset=['Column name'])
df.dropna()
df = df[df['EPS'].notna()]
In [30]: df.dropna(subset=[1]) #Drop only if NaN in specific column (as asked in the question)
Out[30]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
9 -0.310130 0.078891 NaN
DataFrame.dropna() method
df=df.interpolate(method='pad', limit=3)