PYTHON
pandas if python
import pandas as pd
names = {'First_name': ['Jon','Bill','Maria','Emma']}
df = pd.DataFrame(names,columns=['First_name'])
df.loc[(df['First_name'] == 'Bill') | (df['First_name'] == 'Emma'), 'name_match'] = 'Match'
df.loc[(df['First_name'] != 'Bill') & (df['First_name'] != 'Emma'), 'name_match'] = 'Mismatch'
print (df)
if condition dataframe python
df.loc[df['age1'] - df['age2'] > 0, 'diff'] = df['age1'] - df['age2']
pandas if python
import pandas as pd
numbers = {'set_of_numbers': [1,2,3,4,5,6,7,8,9,10,0,0]}
df = pd.DataFrame(numbers,columns=['set_of_numbers'])
print (df)
df.loc[df['set_of_numbers'] == 0, 'set_of_numbers'] = 999
df.loc[df['set_of_numbers'] == 5, 'set_of_numbers'] = 555
print (df)
pandas if python
import pandas as pd
names = {'First_name': ['Jon','Bill','Maria','Emma']}
df = pd.DataFrame(names,columns=['First_name'])
df['name_match'] = df['First_name'].apply(lambda x: 'Match' if x == 'Bill' else 'Mismatch')
print (df)
pandas if python
import pandas as pd
names = {'First_name': ['Jon','Bill','Maria','Emma']}
df = pd.DataFrame(names,columns=['First_name'])
df.loc[df['First_name'] == 'Bill', 'name_match'] = 'Match'
df.loc[df['First_name'] != 'Bill', 'name_match'] = 'Mismatch'
print (df)
if else pandas dataframe
import pandas as pd
numbers = {'set_of_numbers': [1,2,3,4,5,6,7,8,9,10]}
df = pd.DataFrame(numbers,columns=['set_of_numbers'])
df.loc[df['set_of_numbers'] <= 4, 'equal_or_lower_than_4?'] = 'True'
df.loc[df['set_of_numbers'] > 4, 'equal_or_lower_than_4?'] = 'False'
print (df)
python pandas if statement
df.loc[df['column name'] condition, 'new column name'] = 'value if condition is met'