df[['A', 'B']] = df['AB'].str.split(' ', 1, expand=True)
df.Name.str.split(expand=True,)
0 1
0 Steve Smith
1 Joe Nadal
2 Roger Federer
d = [pd.DataFrame(df[col].tolist()).add_prefix(col) for col in df.columns]
df = pd.concat(d, axis=1)
id0 id1 id2 value0 value1 value2
0 10 10 NaN apple orange None
1 15 67 NaN banana orange None
2 12 34 45.0 apple banana orange
df[['A', 'B']] = df['AB'].str.split(' ', 1, expand=True)
df = pd.DataFrame(df.Raw_info.values.reshape(-1, 3),
columns=['Function_name', 'prop1', 'prop2'])
print(df)
Function_name prop1 prop2
0 Function_1 internal_prop_1 external_prop_1
1 Function_2 internal_prop_2 external_prop_2
2 Function_3 internal_prop_3 external_prop_3