df1 = pd.DataFrame({"A": ["A0", "A1", "A2", "A3"]
, "B": ["B0", "B1", "B2", "B3"]
, "C": ["C0", "C1", "C2", "C3"]
, "D": ["D0", "D1", "D2", "D3"]
, "E": ['E0', 'E1', 'E2', 'E3']})
# since E0 isn't column in subsequent dfs their values will be NaN
df2 = pd.DataFrame({"A": ["A4", "A5", "A6", "A7"]
, "B": ["B4", "B5", "B6", "B7"]
, "C": ["C4", "C5", "C6", "C7"]
, "D": ["D4", "D5", "D6", "D7"]})
df3 = pd.DataFrame( {"A": ["A8", "A9", "A10", "A11"]
, "B": ["B8", "B9", "B10", "B11"]
, "C": ["C8", "C9", "C10", "C11"]
, "D": ["D8", "D9", "D10", "D11"]})
frames = [df1, df2, df3]
result = pd.concat(frames, ignore_index =True)#ignore index resets indecies
result #->
A B C D E
0 A0 B0 C0 D0 E0
1 A1 B1 C1 D1 E1
2 A2 B2 C2 D2 E2
3 A3 B3 C3 D3 E3
4 A4 B4 C4 D4 NaN
5 A5 B5 C5 D5 NaN
6 A6 B6 C6 D6 NaN
7 A7 B7 C7 D7 NaN
8 A8 B8 C8 D8 NaN
9 A9 B9 C9 D9 NaN
10 A10 B10 C10 D10 NaN
11 A11 B11 C11 D11 NaN
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
keys=None, levels=None, names=None, verify_integrity=False)
result = pd.concat([df1, df4], axis=1)
result = pd.concat(frames, keys=['x', 'y', 'z'])
result = pd.concat([df1, df4], axis=1, join='inner')
result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])