PYTHON
convert a dictionary into dataframe python
import pandas as pd
data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
pd.DataFrame.from_dict(data, orient='index').T
convert dict to dataframe
#Lazy way to convert json dict to df
pd.DataFrame.from_dict(data, orient='index').T
convert pandas dataframe/ table to python dictionary
df.to_dict(orient='index')
dataframe from dict
pd.DataFrame.from_dict(data)
dataframe to dictionary
>>> df.to_dict('records')
[{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
convert a dictionary to Pandas DataFrame
import pandas as pd
my_dict = {key:value,key:value,key:value,...}
df = pd.DataFrame(list(my_dict.items()),columns = ['column1','column2'])
pandas to dictionary
create pandas dataframe from dictionary
In [11]: pd.DataFrame(d.items()) # or list(d.items()) in python 3
Out[11]:
0 1
0 2012-07-02 392
1 2012-07-06 392
2 2012-06-29 391
3 2012-06-28 391
...
In [12]: pd.DataFrame(d.items(), columns=['Date', 'DateValue'])
Out[12]:
Date DateValue
0 2012-07-02 392
1 2012-07-06 392
2 2012-06-29 391
convert pandas dataframe to dict with a column as key
df.set_index('columnName').T.to_dict()
pandas df to dict
from pandas to dictionary
df = pd.DataFrame({'col1': [1, 2],
... 'col2': [0.5, 0.75]},
... index=['row1', 'row2'])
>>> df
col1 col2
row1 1 0.50
row2 2 0.75
>>> df.to_dict()
{'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
pandas use dict to transform entries
>>> df = pd.DataFrame({'col2': {0: 'a', 1: 2, 2: np.nan}, 'col1': {0: 'w', 1: 1, 2: 2}})
>>> di = {1: "A", 2: "B"}
>>> df
col1 col2
0 w a
1 1 2
2 2 NaN
>>> df.replace({"col1": di})
col1 col2
0 w a
1 A 2
2 B NaN